February 199y Report No. STAN-CS-90-1304
Ny .

SI_ A Model of Object-Identities and Values
= 4]

™~

N

S :

i
Q Toshiyuki Matsushima and Gio Wiederhold

Department of Computer Science

Stanford University
Stanford, California 94305

S L" LECT
g CLECTE
%\ UCT 0 3 1990

- L g

R (k

s

DiSTRIBUTION STATEMERY

Appressad tar mublic releuse; ‘o 2
LisiLeton Unlie ted ,




SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188
13 REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

+ [ 6a NAME OF PERFORMING ORGANIZATION 6b OI;FICE ISY!LAIB)OL 7a. NAME OF MONITORING ORGANIZATION
s . If applicable
Stanford University . (17 app

. 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Department of Computer Science
Stanford, CA 94305

83. NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicable) )
DARPA N00039-84-C-0211
8¢c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
i PROGRAM PROJECT TASK WORK UNIT
Arlington, VA ELEMENT NO NO NO ACCESSION NO

11. TITLE (Include Security Classification)

A Model of Object Identities and Values

12 PERSONAL AUTHOR(S)

Matsushima Toshivuki
132 TYPE OF REPORT 130 TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Research FROM__1988 T70_1990 February 1990

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

- An algebraic formalization of the object-oriented data model is proposed.
The formalism reveals that the semantics of the object-oriented model
consists of two portions. One is expressed by an algebraic construct,

. which has essentially a value-oriented semantics. The other is

expressed by object-identities, which characterize the essential difference of

the object-oriented model and value-oriented models, such as the relational

model and the logical database model. These two portions are integrated by a

simple commutativity of modeling functions.

The formalism includes the expression of integrity constraints in its

construct, which provides the natural integration of the logical database

model and the object-oriented database model.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O uncLAasSIFIED/UNLIMITED O SAME AS RPT I DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603




A Model of Object-Identities and Values

Toshivuki Matsushima. Gio Wiederhold
February 23, 1990

Abstract

In this report, a formalization of the object-oriented data model is proposed, which inte-
grates value-oriented models and object-oriented models by providing a simple semantics of
object-identity.

The formalism reveals that the semantics of the object-oriented model cousists of two
portions. One is expressed by an algebraic construct, which has essentially a value-oriented se-
mantics. The other is expressed by object-identities, which characterize the essential difference
of the object-oriented model from value-oriented models, such as the relational model and the
logical database model. The value-oriented portion represents the abstraction of the real world
objects, while the object-oriented portion represents the existence of the real world objects.
These two portions are integrated by a simple commutative diagram of modeling functions.

The formalism includes the expression of integrity constraints in its construct of classes.
which provides the natural integration of the logical database model and the object-oriented
database model. More specifically, we will show that a datalog program can be expressed as a
collection of classes in our model.

As an application of the formalism. formal guidelines on database design are also discussed.
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1 Introduction

In recent vears, many attempts have been made to formalize the semantics of the object-
oriented model. As the result of these efforts, several models have been proposed [AK 39],
[LR 89], [KW 89].[CW R9]. Roughly speaking. these models are logical database models with
tvped variables. Their approach is to incorporate a structured knowledge representation. such
as complex objects, object-hierarchy, /nto a logical representation paradigm. However. the
semantics of object-identity is not captured in these models. Although [AK 89] formalize
object-identity in their model, the semantics remains complicated. Basically, what they have
done is to “push™ object-identity into a valuc-oriented framework consisting of logic and types.
However, as discussed later. the notion of object-identity is something that will never fit into
the value-oriented paradigm:.

In this report. a formal semantics of an object-oriented model is proposed, which approaches
the issue from the opposite direction. \We try to incorporate a logical knowledge representation
into a structured knowledge representation paradigm. We will show that our approach pro-
vides a natural formalization of object-identity and a simple integration of the object-oriented
paradigm and the value-oriented paradigm.

This report has two main objectives. Oue is to provide simple and elegant semantics of
object-identity, which integrates value-oriented models and object-oriented models. The other
is to extend the formalization of objects so that the integrity constraints are included.

1.1 Formalization of Object-identity

In this section, we first provide an overview of the origin and the role of object-identity in
knowledge representation, using the discussions in the literature listed above. Then, we provide
an outline of our formalization of object-identity.

The semantics of object-identity is obtained by considering a basic aspect of a knowledge
representation. Namely, any knowledge representation is only an approximation of the real
world knowledge. The existence of objects in the real world cannot be captured by the values
of expressions. We consider an example. Let us assume that a concept "person’ is expressed
by name and address according to the following schema in the sense of [AK 89]%.

Location = [city:String. street:String, number:Integer),

Person = [name:|first.String last:String], address:Location)].

In most cases, we can completely identify each individual person by providing the name and
address. However, there is a possibility that two distinct persons with the same name are
living at the same place. The occurrence of these persons cannot be characterized by the
values of attributes ‘name’ and ‘address’. We can come up with two relevant solutions for
this problem. One is to provide more attributes for expressing the concept ‘person’. However,
the real attributes of a person are almost infinite in number. So. even if we introduce many
attributes for “person’, we cannot eliminate the possibility that some distinct persons are
expressed by the same set of attribute values. The other solution is to provide a key attribute
to express the uniqueness of each individual person. However, this does not provide a natural
way of expressing the real world. because it is an artificial attribute. We cannot avoid the
nunecessary semantics of the key attribute. For example. a *social-security-number’ may be

'We use the notation explamed in [AK 8Y] for the moment
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implemented as either an integer or a string consisting of digit characters. In order to deline
the equality of objects, we have to define it as equality of integer, or equality of string according
to the “implementation.” Further. we have to express the maintenance of the kev attribute
explicitly in the higher level semantics. For example, “Once an instance is created. the key
attribute should not be altered”. “there should not be more than one instance whose key
attributes are identical.™ Siuce the semantics of “real existence of objects™ is just that of a set
with the equality relation. it is not desirable that the semantics of the mplementation appuears
in higher level semantics.

The problem is essentially due to the inherent incompleteness of our representation. Theve-
fore, rather than expressing the uniqueness of an occurrence in the real world by attribute val-
ues, we need sonething that specifies the existence of occurrence. The object-identity serves
this role. It is important that an object-identity is not a value. Instead, it is an entry point
for information access in our knowledge. In other werds, it is the reference to knowledgebase.
Hence, as discussed in [LR 89]. it provides the basis for object sharing. which is the most
important advantage of introducing object-identities in a practical system.

Let us come back to the previous example. Suppose that a person named “John Ford”
lives at “2260 Yale Street Palo Alto”. Moreover, suppose that a person named “Mary Carter”
lives with him. These facts are expressed by:

"PO0L" = [name:[first:*John™, last:* Ford"]. address: L010].

"P002" = [name: first:"Mary”,last:*Carter”],address: " L010'],
"LO10" = [city:“PaloAlto", street:*Y ale” , number:2260).

What happens if the name of the street where John lives is changed from “Yale™ to “llarvard™?
Since John lives at the location "L010’, the expression of the location becomes:

"L010’ = {city:" PaloAlto”, street:“Harvard” , number:2260).

Hence, after the change, we can say tliat both Join and Mary are living on Harvard Street.
The point is that *LO10’ corresponds to the existing location on earth, and John and Mary’s
address is expressed by referring to 'L0O10°. Thus, when its street name has been changed. the
change is propagated properly.

So far, we have seen the origin of object-identity and the role of object-identity in the
knowledge representation. To summarize:

e The object-identity corresponds to the real existence of objects in the real world. which
cannot be captured by the the value of expression.

e The object-identity provides the basis of object-sharing. An object-identity is the refer-
ence to represented knowledge. which is exactly what is to be shared.

Next we claim that in order to take full advantage of object-sharing, attribute values of an
object should be object-identities.

[AK 89]. [CW 89] allow complex values” as the values of attributes. [t provides us the
complicated expression of objects. Namely, in the above example. [first:“ John™ last:"Ford™]
is a complex(structured) value. lHowever, this approach has a disadvantage. Il we allow
complex values. there is an inherent possibility that the subexpression of a complex value

“We use the term “complex value™ mstead of “eomplex object™ They Jon't carry object-identity




page G

would be changed. Since a substructure of a value cannot be shared. it will cause costly
update maintenance. Of course, the schema is designed so that the attribute value of ‘name’
is really a value and not sharable. because it is quite natural to express a person’s name as a
value. However, even in this case, we can show an example that demonstrates the necessity of
sharing objects.

Let us vonsider an additional concept. ‘BusinessCard’.

BusinessCard = [company:String, title:String. name:| first:String, last:String))
Assume that John's business card is expressed byv:
‘BO11" = [company:*C'D 3", title:"salesman™, name:| first:>John™ . last:* Ford"))

What happens if John marries Mary and chauges his last name to “Carter™? We have to create
a new value:

[[irst:*John™ last:"Cuarter™].

and replace
(first:“John™ last:* Ford™].

The creation of the new value will be costly when the structure is large. Furthermore, we have
to replace ‘name’ of both ‘P001’ and ‘BO11".

[f there is no need for the object-sharing, the complex value would be reasonable. However,
if we have more than one concept that shares a same value, as in above example, we should
incorporate with object-sharing. Thus, in this case, the following schema will be preferable.

Name = [first:String, last:.String],

Person = [name:Name. address:Location],
BusinessCard = [company:String, title:String, name:N ame).

The point is that every attribute should refer to an object with object-identity. Therefore.
it is not desirable to design such a schema as the original ‘Person’ with complex-value [first:
String, last:String] as attribute value. The schema must be changed dramatically when we
add a new schema object like ‘BusinessCard’.

In order to demunstraie the idea more clearly, we repeat the discussion with the following
schema. In this case, the attribute is not a complex value, but just a value.

Person = [name:String. employer:String]
BusinessCard = [company:String. name:String).
The information about John will be expressed by:
*P001" = (name:JohnFord” .employer:*C' DB

‘BOLL = [company~C' DB, title: salesman™  neme:* John Ford”]

If he changes his company from "CDB" to “HAL". we have to change the emplover of "P001
and the company of ‘BOLL". Therefore. rather than having value-attribute, we should have
only attribute referring the ohject-identity of other objects. Namely,

“PO0L = [namer NO1 . ploye re 0007,
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‘BO11" = [company: E000'. titlr* 5111, name: N 0127].

‘N012’ can be associated with a string value *CDB” or “HAL.”

To summarize, in order to make use of object-sharing fullv, it is preferable that a schicma
object doesn’t have ‘value’ as an attribute value®. Instead, attribute value should be an object-
identity referring to another object instance. In particular. it is not desirable to have complex
values as attribute values.

Moreover, since the attribute names. such as ‘name’,‘employer’. can be regarded as access
functions, we get the following flat representation.

name(*PO01") = N 012", cmployer(*PO0L) = ~E£000,

company(*B011") = *E000', title('BOLl") = *S111', name(*B011') = *POOL".

Thus the information about John is expressed by the partial functions from object-identities to
object-identities. We call this representation space olject-identity space, which will be precisely
formalized in Section 4.2. The semantics of this representation is quite simple.

However, the above representation does not have an important feature of object-oriented
representation. That is the explicit structural representation of knowledge. One of the hig
advantages of frame or complex object in knowledge representation is that they provide the
structure of knowledge that we can easily imagine and manage. Of course. we can express the
semantics of complex-object in first order logic by some transformation [CW 89]. However, if
we express it in first order sentences or formulas, the structure is concealed in the semantics of
sentences. Hence we have to interpret the first order sentences to get the structure. Therefore,
we should integrate the object-identity space with a structured complex-value representation.
In Chapter 4, we have a simple and elegant formalization that integrates them. The outline
of the integration is as follows. First, we provide the syntactical construct of schema objects.
Next, we provide the value-oriented model, i.e. an algebraic mode! with (complex) values.
Then we provide the model expressed by the object-identity space. Finally, we provide the
mapping that combines object-identitv space and algebraic representation of complex-values.
The compatibility of object-identity space representation and algebraic representation is ex-
pressed by a simmple commutative diagram.

1.2 Integrity Constraints

In the conventional approach as [AK 89], [KW 89]. schema objects are defined with the struc-
ture expressed by types. Then logical formulas are constructed on top of the objects (Rules in
[AK 89], O-formulas in [KW 89]).

In our model, each schema object, called C-cluss, consists of type and a restriction pred-
icate. The type expresses the structure of knewledge representation. which will be referred
to as a complex object, a hierarchy of objects in conventional object-oriented models. The
restriction predicate will express the integrity constraint of the representation. Let us consider
“absolute temperature” as a simple example. [t can be expressed by the positive real numbers.
The structure will be realized by the algebra R with operations +. —. * etc. The integrity
constraints will be expressed by the predicate R(x) = (r > 0) expressing “positiveness.”

By including the integrity constraints as the basic component of cacl object, we can show
that every anit of knowledge can be expressed by objects. Even a logical formula can be

FThe termy “attnibute value™ s not a nice terminology  May be 1t should be “accessed attribute ™
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expressed by an object. In the conventional approach. a logical formula(ground fact) is a value
in the sense that if every substructure of two logical formulas are the same, then those logical
formulas are the same. However, as discussed in Chapter 5, even a logical formula cannot
be treated as a value, due to the inherent incompleteness of our knowledge representation,
Rather, it should be expressed by an object that carries a unique object-identity.

If we express knowledge by objects, we can provide a representation of the rcal world that is
closer to our intuition than expressing knowledge by logical formulas on complcr obyccts. \We
will discuss this matter in detail in Chapter 5.

1.3 Outline

The outline of this report is as follows.

In Chapter 2, we introduce a notion of data algebra that is an abstraction of data. Rouvghiy
speaking, the data algebra is the combination of tvpe and integrity constraints. The tyvpe part
is expressed by a universal algebra, and the integrity constraints part is expressed by a boolean
function. The data algebra provides the basis for the seinantics of value-oriented data model,
which is discussed in Chapter 4.

In Chiapter 3. we introduce a notion of C-class that formalizes scliema objects. A ('-class is
a construct that expresses a unit of real world knowledge. As mentioned earlier, in conventional
models such as [AK 39], [KW 89], those units of knowledge are expressed by complex objects
and logical formulas. The C-class is similar to class in the usual object-oriented languages,
such as Smalltalk, and CLOS [WT 89]. A C-class is a combination of syntactical expressions
of type and restriction predicate, the type specifies the structure and the restriction predicate
expresses integrity constraints. A restriction predicate is a first order formula with implicitly
typed variables, which is essentially a restricted form of O-formula [KW 89]. We also introduce
a hierarchy among C-classes to express the hierarchy of knowledge.

In Chapter 4, we discuss the main theme of this report, object-identity. First we formalize
a value-oriented model of C-classes. Then we define a object-oriented model of C-classes by
introducing the object-identity space. This object-oriented model represents the clear semauntic
distinction of a value-oriented model and an object-oriented model. ["urther it clarifies the role
of object-identity in the knowledge representation.

In Chapter 5. we consider the C-classes in detail and provide some kinds of C-classes. It
reveals that even a logical representation of knowledge cannot be captured in a value-oriented
paradigm. We discuss which knowledge should be value and which should be object as the
database design issue. We introduce the concept model as a knowledgebase model.

In Chapter 6, we demonstrate the expressibility of the concept model. by simulating the
semantics of other models, such as datalog, IQL[AK 89)].

In Appendices, we briefly discuss database operations, inheritance and overloading. The
semantics of database operation is quite simple. especially for queries. Furthermore, we provide
the copy of the actual session performed on the prototvpe svstem that has been implemented.

2 Data Algebras

We introduce a notion of data algebra to express instances of schema objects. The notion of
data algebra is an abstract formalization of complex objects with integrity constraints. which
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will serve as a value-oriented model of schema objects later. We assume a basic knowledge of
the universal algebra, as found in p.22 - p.60 in [BS 81].

2.1 Multi-valued Universal Algebra

[n order to define the notion of data algebra. we provide a precise definition of mult/-valued
Junction, partial function, and an extended universal algebra. If the reader does uot like
mathematical details, he/she may read only the last paragraph of this section.

Let A and B be sets, and let 24 and 28 be the power sets of A and B respectively. Then,
a function from 24 to 2B is called a multi-valued function® from - to B if it satisfies the
following condition.

U €24, f(U) = | f({z))

relU

We denote the multi-valued function as:
fud — B.

[t is easilv proven that the composition of multi-valued functions is also a multi-valued
function. Namely,

fiA—= B, guB — C = gofu:d — (.

A multi-valued function f is called total if
fu:A— B, VzeA, f({z})#9.

Note that we can construct a category consisting of sets as objects and multi-valued functions
as morphisms. The identity multi-valued function id4 on a set A is the identity function on
24,

For a multi-valued function f from A to B. we can always define the quasi-inverse function
f~! from B to A.

we 2B, V)Y (ze Al(flo)n V) #0).

A multi-valued function f from A to B is called injective if f~1of equals id4. The function f
is called surjective, if fof~! equals tdg.

A partial function f from A to B is a multi-valued function from A to B such that for each
element of A, the cardinality of its image is no more than one,

Ve e A, card(f({z})) < 1.
The domain 8(f) of a partial function f is:
a(f) = {x e Al f({z}) # 0}.

Any function h from A to B can be regarded as a multi-valued function. Namely. we can
define a multi-valued function h by:

VIoe2d hU) = {flx)|x e U},

YA multi-valued function from A4 to B is equivalent to a binary relation on A < [
“Ihe operator  can he considered as a functor from the category of sets ta another category consisting of <ot~ 1~
objects and multi-valued fuactions as morphisms




page it

In the rest of this report. we use the following simplified notation so long as it causes 1o
confusion. For a multi-valued function from A to B, for an element z of A, and y of B.

def def
flz) 2 f{z}), (fle) = v) 2 (f({z}) = {y})
Moreover, we introduce a virtual element v, to express “undefinedness”, which is called the
null value. The null value 11} is a common element of all sets. For a multi-valued{partial)
function f, we denote

if
fH{z}) = 0.

Now we extend the notion of universal algebra. A multi-valued universal algebra A is
a pair of a set A4 and a family {f;};e; of multi-valued functions. All the notions. such as
homomorphism. isomorphisii, are redefined using multi-valued functions instead of functions.
Similariy, a partial-valued wiversal algebra is a multi-valued universal algebra such that all
the functions are partial.

The notion of data algebra is defined by multi-valued universal algebras. However. in order
to make the discussion simple. we only consider partial-valued universal algebras in the rest
of this report. The reader can consider the partial-valued universal algebra as usual universal
algebra. except for the existence of null value. Hence, we use the term “universal algebra”
instead of “partial-valued universal algebra™ from now on. But readers should remember that
functions are partial.

2.2 Definition of Data Algebra

In this section. we provide the definition of the data algebras. A data algebra 4 is a pair ol a
universal algebra ® A and a restriction function *. Namely,

é=(A,r), A= (A {fiher) r:A—2,
where 2 is the two-element boolean algebra.
2 = ({0.1}. AL V. =)

Further, we assume that each data algebra contains a special element null value v,. A\s
mentioned before, the null value expresses “undefinedness.” For each function, if one of the
arguments is null value then its value is also null value.

A data algebra is the abstraction of a collection of data with operations on it. For example.
“positive numbers” would be expressed by a data algebra:

(R, r), r(z) &y L L2

where R is the universal algebra of real numbers.

“We should remember that this universal algebra is a partial-valued umiversal algebra defined i the previons
section. We can regard it. as if it was a usual universal algebra by introducing a null-value v as a common value .
all universal aigebra.

“More precisely, r is a function on the domamn of A However. we describe it as a function on A Sl
throughout this report. we treat A and its domain interchangrably o long as the meaning s ctear For exaople 1o
give universal algebras A B. we wonld state something like “a mappig from A 1o B™ The meanimg s o mappane
from a domain of A to the domain of B.”
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2.3 Fundamental Operators

We introduce operations among data algebras. These operations will provide the interpreta-
tions of fundamental operations on C-classes. which will be introduced in Chapter 3. Each
operation happens to have a corresponding construct in relational algebra or SQL. However,
we should note that these operators have not been obtained by a mere extension of relational
algebra. hut by the consideration of knowledge representation. as their names sugeest. \We
could say that one of the reasons of the success of relational model is due to the fact that
the relational operations have a correspe.adence to a higher level of mental processes. such as
abstraction of concepts. This will be clear when we introduce the fundamental operators on
("-classes in Chapter 3.

2.3.1 Aggregation

The aggregation operator constructs a complex structure out of data algebras. It is similar to
cartesian product operator iu relational algebra.
Let @ be a set of symbols. and let a be a mapping from ¢ to a set of data algebras.

offy=é5=(Aspry) (fed)
Then the aggregationof {5} seq is
([T Ay, Afriop))
fed fed
where p, is the projection from [, A, to A;, and o designates a composition of mappings.

We denote the aggregation by
H((I),a) or H g
fed

In particular, if & is equal to {1,....n}, we denote it

Moreover. if 8, is equal to a data algebra é for each i (1 < 7 < n), we denote & instead of
[Ti=, ¢.. Furthermore, if we write the aggregated data algebras as:

=1

8" x 8, 8" xbxé,

for given data algebras 6, 8’, 6”. etc. it means that we are assuming the following implicit
sequencing,

afl) =86 a2y =b.a(3)=8.....
2.3.2 Recursive Aggregation

In order 1o provi e an algebraic model for recursive tvpes, we introduce recursive aggreqgation.
Let (7 be adirected araph with nodes Voand labeled edges [,

G=(i ).

1
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We denote an element of £ by (n.m. ). which means that there is an edge from 1 to m labeled
by {. TFurther. let @ be a mapping from U to a set of data algebras, where U is the subset of
1" such that each element u of I’ doesn’t have any edge that comes into w.

U fue vi~(303 (ron e )Y

a(n) =(B,.s,) (nel).

Then. the recursive aggregation with respect to (v and « is defined as follows.

I—I((Il.(l) = (nné" An- /\ne\'(rn omy))

. de f Bn n e l)
Vnel A, = .
{ Minmyee Apmy (n g )

Yin.m.Ye E A=A,

. | def 1 (1€ ty(r))
VeV, rp(z) = { 0 (otherwise)

The functions t,, are multi-valued functions from A. to 2. which is defined as follows.

‘{i_'f J /\(n.m.l)EE(SmOW(m_l)) (n g )

n s, (otherwise)
_ 1 (r =vy)
wlere s, () = { to(z) (otherwise)

Note that the elemerts of A,(n € U) have an infinite structure in general. We may regard
those elements as infinite trees. However, since we allow null value v as the common element
of every algebra, we can express elements with a finitely recursive structr -e. The function tn
is well-defined. if the recursive definition assigns consistent values to each subtrees. Although
the restriction function r is a partial function. it is well-defined on the elements with finite
structure and cyclic structure. The aggregation defined above is a special case of the recursive
aggregation. In fact, if we assume:

V=0, E=0.a(f)=Aj/c o)

we get the original aggregation operator.

2.3.3 Abstraction

The abstraction operator constructs a new data algebra ignoring some of the substructures of
a data algebra. It is similar to the projection operator in relational algebra.

For f € @, let Ay be a universal algebra. where @ is a set of symbols. and let ¥ be a subset
of &. Let ns consider the following data algebra o

&= (T Ay v
Jed




—
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where [];cq Ay is the product algebra of {As}see. Further. let Py be the projection from
[Treo Ay to [Tgew Ay The abstraction T(é.¥) of the data algebra 6 with respect to ¥ is
defined as:

T(8,9) = ([] Ay 1),
€V

where

vy wf e pgta)e(y) = 1)
r(r) = { 0 (otherwise)

2.3.4 Restriction

The restriction operator imposes a new restriction on a data algebra. It is similar to the
selection operator in relational algebra.

Let 6 = (A,r) be a data algebra, and let s be a mapping from the domain of A to 2.
Then the restriction with respect to s is

(A.rAs)

The restriction is denoted by O(8é, s).

2.3.5 Sequence Construction

The sequence construction operator constructs a data algebra consisting of sequences of ele-
ments of a data algebra.

Let 6 = (A,r) be a data algebra. The sequence algebra Seq(é) derived from & consists
of the direct sum® of the product algebra A™ (i = 0,1,2,...), and the relevant restriction
function req,

Seq(d) = (TiLpA", 1)
Ve = (21.22,...,2Z,) € Seq(é),(n = 0,1,2,...)
- /\:'1 =1 l'(.'L‘,‘) (n > 0)

1

r.seq(l') (_Tl - 0)

Given a class of universal algebras. The set of finite sequences of elements of the algebras
in the class forms a universal algebra with functions, length, concatenate, null, reverse. eic.
We designate it by SEQ. We assume that the direct sum £25A" is a subalgebra of SEQ by
embedding it in SEQ.

2.3.6 Bag Construction

The bag construction operator constructs a data algebra consisting of bags of elements of a
data aleebra.

Let & = (A.r)be a data algebra. We can define a congruence relation ~ in the direct sum
algebra £, A’ as follows. For elements . § of Seq(d).

o= (.., In). y = (]j] ..... !/m)-

8The direct sum 1s always a partial-va’ 1ed algebra.
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the sequences 7 and 7 are equivalent with respect to ~: & ~ ¢. if n equals m. and there exists
a permutation o of order n such that

(Zy,....3,) = (‘lld(l)v'--»xa(n))'

Then the bag algebra devived from é consists of the quotient algebra of £ A" with respect
to ~ and the restriction function ry,,. Since the restriction function rg, of Seq(¢) has the
saune value on the equivalence class of ~. we can define the restriction function ry,, of Bag(¢)
by:

rbag([f]) = rseq(f)»

where [Z] is the equivalence class with respect to ~ containing I. Similarly. we can construct
a universal algebra BAG as a quotient algebra of SEQ. As in the definition of Seq(é#). we
assume that the algebraic part of Bag(é) is a subalgebra of BAG by embedding it in BAG.

2.3.7 Set Construction

The set construction operator constructs the data algebra consisting of finite sets of elements
of a data aleebra.

Let 6 be (A.r). The set algebra Set(d) is the collection of finite elements of A that satisfies
r. The definition is as follows. First, we define a restriction function s on Bag(é). We denote
an element of Bag(é) by (7], where T is an element in Seq(é). Then.

r= (.7:1,1'2., .--\-L'n)

" 7])@{ 1 (if(i#5= 1i#2))

~—

! 0 (otherwise)

Next. let SET be the universal algebra of finite sets with functions U(union)., N{intersection).
~(difference). etc. Then set algebra of Set(6) is obtained from ©(Bag(é).s) by regarding its
algebraic component as subalgebra of SET. Namely,

O(Bag(d),s) = (E520A™/~. Tpag A S).

2.3.8 Categorization

The categorization operator constructs a new data algebra by categorizing clements of a data
algebra with respect to the values of some substructures. It is similar to the grouping construct
of SQL without aggregation functions.

Let ® be a set of symbols, let ¥ be a subset of & and, let ¥¢ be the complement of ¥,

YyCcd, ¥ =%,

Further let .3 be a mapping from & to a set of universal algebra. Now let us consider the
following data algebra 6.

6= (J] 3N

jed

Then the categorization Q(6, W) of & with respect to WV is:

|

{
!
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QO V) = O(Y(6.0) x Set(T(6,¥)}, rq).
The restriction function rq is defined as follows.

_ Il (Vzey.r(c=z1=1)
rel(z,y)) = { ) (otherwise).

where for (z1.....2a) in [Treg B(S) (31 o ym) in [Leqe 3(9).

(T1ye s Zn) B (Y1y e Ym) = (X0, o T Y1 Y ) € Hﬂ(f).

2.4 Many-Sorted Data Algebra

So far, we have introduced the notion of data algebra based on universal algebras. In this

section, we extend the notion to many-sorted universal algebras instead of universal algebras.
First we consider a many-sorted algebra with sorts §. l'or a sort s in §, let us denote the

universal algebra of the sort s by A;, and let A(s) be the collection of all subalgebra of A;.

Furtier let A(S) be the closure of Uses .A(s) with respect to the cartesian product operator.
A set of data algebras D is the many-<orted data algebras with sorts §. if

V6 eD & = (A,r), Ac A(S).
We call the data algebra of the following form as the primitive data algebra of sort s.
6= (A5 r)(s€d)

We assume that any primitive data algebra of sort s will never be derived from primitive
algebras of different sorts with fundamental operators. Namely. any data algebra of the form
(As, r)(s € §) will never be derived from another data algebras of the form (A, r) (¢’ €
S — {<}) with fundamental operators.

From now on, we assume that data algebras are constructed on a many-sorted algebra.
even if the sorts S is not specifically stated. In another word, data algebras are generated from

primitive data algebra in the sense defined in the next section.

2.5 Generated Data Algebra

I'or a given set of data algebras, we can generate data algebras by the fundamental operators.
such as aggregation, restriction, abstraction etc. We call a set of data algebras algebraic
family of data algebras if it is closed under these operations. For a set D of data algebras. we
can consider the minimum algebraic family of data algebras that contains D. We call it the
algebraic closure of D and denote it as D. Since the intersection of algebraic families is also an
algebraic family, it is obvious that there exists a unique algebraic closure for any set of data
algebras. In fact, the closure of D is the intersection of ail algebraic families that contain D.

Converselv, we can consider the minimal set of data algebras that generate a given set D
of data algebras. More precisely, we can consider the set niD) of dara algebras such that:




P

¢ the algebraic closure of k(D) contains D.

#(D) > D.

¢ among the sets that satisfy the above condition, x(D) is minimal. Namely. for a set of
data algebras E, if
E>Dand k(D)2 E,

then
D=E.

It is not difficult to prove the uniqueness of k(D) up to isomorphism, if D is finite. Namely.
it is not only minimal but also minimum. So we call it the kernel of D. The kernel of a set of
data algebras will provide the building bricks to construct the data algebras.

2.6 Named Data Algebra

The notion of data algebra will provide a structure of the space to express our knowledge.
However, the structure itself is not enough. For example, we can express “absolute temper-
ature” and “half line” by the same data algebra as “positive numbers”, which is defined in
section 2.2 as an example. Moreover. we don’t want to allow operations such as:

1°K + 2¢m.
Thus we need to distinguish the data algebras that are expressions of “absolute temperature”
and “half line.” Hence, we attach names to all algebras to distinguish them. We don’t allow
algebraic operations between the elements of data algebras with different names. A named
algebra is expressed by a tuple:

(ns, Ag, T5)-
[n the rest of this report, we assume that every data algebra is named. lHowever. when we
don’t have to consider the name explicitly, we use the previous notation without a name.

2.7 Hierarchy of Data Algebras

In the later chapters. we will see that data algebras play the role of model of a knowledge
representation (schema representation). In order to express the hierarchyv of knowledge. we
introduce mappings among data algebras. First we assume that there exists a partial order
=< among names of data algebras. If n < n’, we say that the name n is a subname of n'. A
subtype mapping is the mapping from a data algebra to another data algebra, which is defined
as follows.

Let us consider the many-sorted data algebra on the sort S. Let A be the set of universal
algebras corresponding to the sorts.

A={A |s€e Sk
Let D be the manv-sorted data algebra on §.
D = {(S = (11(5, A‘g. l“\)}.

A subtype mapping p from a data algebra ¢ to another data algebra ¢’ is the mapping that
satisfies the following conditions. Let us assume that:

= (n.A.r). & =" A’ r").

{6
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¢ Case |: The data algebras é and ¢’ are primitive algebras.

— The name n is a subname of n’ and the algebras are the same.
n<nand A = A’,

— The restriction function r is stricter than r’ and the p is the nclusion mapping.
Namely,
Yz € A,r(z) = 1 =>r'(z) = 1,

dHp)={z e Alr(z) = 1},
Yz € 0(p), plz) = 2.

e Case 2: The data algebras é and 6’ are compound algebras:

é = (n. H A, r), &=, H A1)

€D e

— The name n is a subname of n’; n < n/.

— The attribute @' is a subset of &; ' C .

~ Foreach fin @', there exists a subtype mapping py from (Ay.7;(r)) to (A, ;;’(r’)).
where

o= 3 g = =10

Ty is the projie\c’tion from Iljee Ay to Ay,

Similarly for 7 ,/(r').

— Let II be the projection from IIfc¢ Ay to [Tycer Ay Then,
Vz € Mico Ay, r(z) = 1 = r'((rjeppg)o {a)) = 1.
where micqipy is the product mapping:
Ve € Myeq Vg € ¥, mo((mreeps 1)) = pyimyla).
—~ The subtype mapping p from é to 6’ is defined by:
p=(mgeepy)oll

We say that § is a subtype algebra of é' if there exists a subtyvpe mappine from & to &’
If there exists a subtype mapping from é to §’, & will be a model of a mure general concept
than the concept that has the model §. We will discuss it precisely in Chapter 3.

3 C-Classes

[n order to formalize the construct of schema objects. we introduce the notion of (-class”.
First we define the structure of C-classes.

*(class s a kind of class. The letter Cin “C-class” (s intended to suenest coneept

"
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3.1 C-Class Construct

The set [ of C-classes is defined as follows.

3.1.1 Definition of C-Classes

I'= {717 = (ny, 5. .. T,, AL R )
The intended meaning of symbols is:

o The name n, of 7 is a symbol that designates the name of the C-class 5. The svmbol is
unique to each C-class.

e The attributes set &., of v is a set of function svmbols that designate attribute names.
e The attribute value v, of v is a mapping from &, to the set of C-class namesin T'.

o The structural sentences 7., of 7 are a set of sentences that define the algebraic structure
of a universal algebra, which specifies the structure of the representation.

o The auxiliarv sentences A, of v is a set of sentences that defines new functions and
predicates concerning v. A, is used to situplifv the expression.

e The restriction formula R, of 7 is a well-formed formula with one free variable. This
formula specifies a subset of the domain of the universal algebra defined bv T.,. It is the
restriction condition on the domain.

The above construction provides a language for conceptualization of the real world. But
we should keep in mind that our conceptualization is always incomplete. Since any object in
the real world has almost infinitely many attributes. our conceptualization of the object will
be only an approximation. We should distinguish between “real conceptual world” and “our
conceptualization.” The real conceptual world is the complete conceptualization of the real
physical world. In the real conceptual world, a concept can be characterized by the set of
attributes. Namely, any two distinct concepts have different sets of attributes. However our
conceptualization may not be complete, two distinct concepts may be expressed with identical
attributes. Therefore we need C-class names to identify each distinct concept. (It is true that
we can carefully choose attribute names ¢., so that any distinct concepts are expressed with
different attributes in our conceptualization. However, it becomes fairly difficult to design
schema in such a way, if the schema is big. Moreover, if the schema will change in the course
of time. the maintenance of consistent attribute names will be much more difficult.)

3.1.2 Examples of C-classes

We use the prefix notation for +,—, > etc., instead of the conventional infix notation. The
only exception is equality =.

o Integer In our model, we treat integers as the instances of a C-class.

Integer = (integer,@,_L,T/,,teg"._ll,,,,,_//,_,,. TRUL).
where
Truteger = {2 W+ (z.y) = +(y. ).
Ve W Ve + (. +(y.2)) = +(+(r.y) 2.
etc.}.
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Ainteger = {¥& Positive(z) = >(2.0).cte.}.

e People
People is conceptualized by name and age in this example.
dope — s . o .
Person = (person. {name.aye}, vperson. Tperson persons Bperson)-
Vperson NOME) = SITING, Uperson(age) = integer,

where string and inteqger designate the C-classes that have algebraic structure of strings
and integers.

Therson = { VaeT(name(x),string) A T(age(zx).integer),
YoVy name(modi fy(z.person,y)) = v,
VaVy agelmodify(z.person,y)) = y}.

where modi fy designates the function that modifies the attribute values of C-classes.
Npersn = {Vr CldPerson(r) & age(z) > G0.etc}.
Ryerson() = ((0 < age(r) <200)A...).

o Rational Numbers
The structured values, such as rational numbers, are also expressed by instances of a
C-class. The expressions of rational numbers are expressed by:

Rationales = ( rational {n“ﬂl- den }1 YRational, TRalmnala ARulxonalw Rratxonal)»

where
L'Rah'orml(num) = URat. ,m[(d(.’lt) = integer,
TRational
= {VYa¥b num(a)=x A num(b)=u A den(a) =y A den(b)=v
=
num(+(a,b)) = +(x(z.v). (v, y)) A den(+(a,b)) = *(y,v).
etc.},

ARationat = {Vr Invertible(x) = ~(num(z) = 0),etc}.
Rratmnul(-l') = \((l("ll(.'l,') = 0)

e Set_of Integer
A et of a concept is expressed as a C-class without attributes. We assume that a
predicate symbol T is provided to designate the instance-class relation. We also assume
that each set C-class has a standard predicate In, such that In(x,y) means x is in a set
y. We will extend this example to a general case later.

.S'etof_lnteger = (Sff-Of-i?lff{/FT’. V), L, TScta -—\Set_aj_lnteger- RSel_af-[n!eger )-
Tsee = {UlL.y) = Uly.r) Nz Uy, 2)) = U(N(x,y).N(z, ). etc.}.
Rset of tnteger{t) = (¥y In(y.r) = T(y.integer)).
Asetof Integer = { 71 Onc_Element(r)
=
IVyVz In{y. c)AIn(z 0y = y = ). ete.}.

In above examples. we have introdnced relation svmbols T and In. From now on. we assume
these symbols are part of the hasic construct of (-classes.
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3.1.3 Primitive C-Classes

Let us consider a concept with some attributes. We may say the concept is constructed by
the concepts that are attribute values of the concept. To formalize this intuition. we impose a
condition on the structural sentence T, of the C-class with non-empty attributes. If it is not
specially declared. we assume that any C-class with non-empty attributes has the structural
seutences 1o, containing the following sentences 7Y,

Let &) be {fi..... fa}. then
1Y = {vavy fiimodifylz, fi,y))=ylt =1.....n} U
(7 TCe) eal f) |6 = L. m)

The function svmbol mod: fy designates the function that modifies the attributes of (-¢lasses.
The typical model of the sentences T2 is the cartesian product of the attributes specified by
1. lence all the C-classes are constructed out of its attribute C-classes. if their attributes
are not empty. In this sense, if a C-class has no attributes, we call it a primitive C-class. A
("-class that is not primitive is called compound C-class.

In the last example of Section 3.1.2, we have shown that the set of integers is expressed
as a primitive C-class. Later, we will extend this example to express the set of anv C-class
as a primitive (-class. This may seem a little bit strange, because it contradicts the term
“primitive.” It mayv be considered that the set of a C-class should be formalized as something
contplex. We use the term “primitive” meaning “structureless.” In a model theoretic sense, a
set C-class is structureless, the operations that are allowed to them are the standard union,
intersection, etc. There is no algebraic operation that accesses its “sub-structure.”

3.2 Universal Language

Since the description of concepts is essentially local to each concept, there may be inconsis-
tency in the name of function symbols and relation symbols. For example. a person can be
conceptualized by a C-class Person:

Person = (person. {name,address}, tperson.0,0, TRUE).
On the other hand, a subconcept Student of Person mayv be expressed by a C-class Student
Student = (student, {s_name,residence}, vydent, 0. 0. TRUE).

[n this case, s.name and residence are intended to express the name and the address of the
student respectively. So. in order to designate the intended equivalence of these svmbols. we
need a common language. We call this common language universal languagc of T'. Later. we
need the common language to define the hierarchy of the concepts. The precise definition is

as follows.

3.2.1 Universal Renaming

In order to describe the correspondence of attribute names of C-class deseriptions. we define
the notion of renanung as follows. For 1 being 1 or 2. let L, be a first order Tangnace made of
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set V, of variables, set F; of function symbols and set R, of predicate svnibols. A renaming o
from Ly to L, is a collection of injective mappings from Vi to V,. F; to Fy and R, to Ry

a = (ay,ap,0,), 0y V) — Vy, a0 Fy — Fola, 0 Ry — Ra.

such that it preserves the similarity tvpes of function symbols and predicate svmbols. Namely.
i a function symbol f has n arguments, ay(f) also has n arquments. Similarly for predicate
svmbols. Note that the renaming « induces a injective mapping from L, to Lj.

Let L(5) be the language generated by the symbols of the description of 5. Then a language
L is the universal language of T, if there exists a set .Vof renamings such that:

N = {a,ly€eT)

W el a,:L(v) — L.

In a practical case. we may require that the symbols of the same intended meaning will be
mapped to the same symbol in the universal language. In the above example,

Qperson{ RUME) = Csudent(s-name),

Qperson{address) = Ogpugent(residence).

[fowever these are meta-conditions. Theoreticallv the morphisms .V determines the semantics
of symbols. If we have
personfname) = tudent(Tesidence),

it means that the ‘name’ of ‘person’ has the same semantics as ‘residence’ of ‘student’. although
it is different from the common meaning of the words “name” and “residence.” The set .V of
renamings is called universal renamingof T.

3.2.2 Local Renaming

In the actual programming, it is difficult to describe the global semantic equality from the be-
einning. We can only specify the semantic equality locally. i.e. we only provide the renaming
between the description languages of C-classes. In the above example. we may provide the
FCNAMINg ('Student,Person ITom L{Student) to L(Person). When we have provided renaming
between the description languages of individual concepts. we expect that there exists a uni-
versal renaming, which is compatible with those renamnings. Before considering the existence,
we introduce the conditions that those locally defined renamings should satisfy.

Let (7 be a subset of I' x I, and let J be the set of injective renamings among L(7)'s. such
that

7
[t

J = {oym | gt Liyy) — L(v2) (m,72) €4,
We call ((7..J) as the semantic local renaming of T if the following conditions are satisfied.

1. Transitivity
(I,Y‘.Y/,(Y.‘,/‘.Yu € ] = ((Y’Y.‘Y” € -l A (Yo, N1 = (Y‘V.‘W” o] (7,1‘.*1),

where o is the composition of mappings.

2. Route Independence
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- 1

(75 71)7 (7572)’ (7\‘ ‘71)* (1’2‘ Af,} < G = (1’71,‘7' Oty yy = a‘yfz,‘y‘ 0 Ay v, -

3. Acyclicity The binary relation (7 has no cvcle.

The first condition expresses the global semantic compatibility of the morphisms. [f a
svmbol s is semantically equivalent 10 a symbol s’ and s’ is equivalent to &, then s should be
equivalent to »” by the transitive rule of equivalence relation. The second condition designates
the consistency of the inherited attributes. The third condition describes the relevant structure
of a hierarchy.

Note that we can eliminate the first condition. In fact, the second condition guarauntees
that we can extend (G, J) to another semantic local renaming (G’, J’) so that G' is transitive.

3.2.3 Existence of Universal Language

If we have a local renaming. there exists a universal language and universal renaming such that
the universal renaming is compatible with the given local renaming, under a certain condition.
Let us define a partial order <¢; on I by the binary relation G.

de
v <a 24 (v,%) € G.

Theorem 1 et be a set of concepts, and let (G, J) be a semantic local renaming of U'. If (;
s at most countubly infinite, and I has the finite minimal elements with respect to <. then
there exists a universal lunguage L and the universal renaming N of T to L, such that

!
Ay €0 F 0y = 0l 00,

where
N = f{asl7€T}.

3.3 Fundamental Operator on C-Classes

In order to construct complex (C-classes out of given C-classes, we define several operations
on C-classes. These operators are soine abstraction of the mental process of human beings to
create new concepts out of existing concepts. These fundamental operators correspond to the
fundamental operators for data algebras. In fact, the fundamental operators on data algebras
will provide the models of the fundamental operators on C-classes.

3.3.1 Aggregation

For given C-classes, we can create a new C-class by introducing a C-class name, attribute
names that correspond to given C-classes, a set of sentences that specifies the structure similar
to a cartesian product such that the attribute names are designating projections. Let ¥ be a
sequence of (-classes.,

T = (Y2 )y

and let @ be o sequence of svmbols with the same length as ¥,

(b = (f].f) ..... fn)'
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We express each component C-class in § by:
Yo o= (g, @ v, Ty AR (i =1,...,m).
Then the aggregation Il(np, ¥. ®) of ¥ is defined as follows.
Miny.5. ®) = (ng. ®. vp. Tn, Ao, Bn)
e The name np of the aggregation is the svmbol that is compatible with other (-classes.
Namely. the symbol never appears as the name of other C-class.

e The svinbols in @ are the attribute names of the aggregated ('-class l[(np. <. ¢).

e The attribute value vy is the mapping fromi the components of ® to the set T of (-classes.
such that

1L <Vvi<n vnlf) = 7
e The structural sentences Ty is similar to 72 for a C-class v with non-empty attributes.
I'n = {YaV¥y filmodify(z, fi,y))=yli=1...n} U
(Yo T(flz)oen(f)) L i=1...n}.

The symbol modify is the function symbol for the modifier of attribute values.

o The anxiliarv sentences may be any definition of new function svmbols and relation
svmbols that simplify the description.

o Each component of the aggregation should satisfy the restrictions that are imposed on
the attribute value C-classes. The restriction predicate Ry is defined by:

Rn(z) = A Ri(fi(2)):

=1

The aggregation of C-classes has a model that corresponds to the aggregation of data
algebras, which was defined in section 2.3.1. This will be d'scussed later.

3.3.2 Recursive Aggregation

Let G be a directed graph with a set of C-class nanies V' as nodes and labeled edges E. Let U
be a collection of nodes in V', such that there is no incoming edge. Further let ¥ be a subset
of V that contains U,

UCWCV.
We assume that for elements of W, C-classes are given. We denote an element of £ as (n,m.g),
which designates the edge from n to 22 with label g. Let ® be a set of svimbols that has one
to one correspondence with V.

¢ = {fv“"e V1.

The recursive aggregation fl(71ﬁ‘(;', ¢ ) with respect to ¢, & and 1V is defined as follows.

lAlu‘(nﬁ.G,Cb) = (nﬁ.¢. l'ﬁ.Tﬁ.Aﬁ, Rﬁ)

e The svinbol np is a new ("-class name.

o The svubols & are the attribute namnes.
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The attribute values are provided by the one to one correspondence of ¢ and V',
Vzrei'. (fL =7
The structural sentences express the nested structure defined by (7. Let V be (vy..... 04
we consider V7 as a sequence.
{Vr; .. Vr;\ f1 consgl Ty, ) = fi= L kU
{VaT(fulz |ve1 U
{VaT(g( fu Y, u){(v,u,g9)€ E}
The auxiliary sentences include recursive definitions of restriction predicates for compo-

nent C-classes.

A = Usev-n {2 Bul(r) & ({2 = v1 )V (AQugier Rulala))r )}

where the v, is intended to designate the null value in universal algebra. For vin V=W,

the “o’th” component of II(G, ®) is a (-class with recursive structure.

The restriction predicate designates that cach component should satisfv its own restric-

tion predicate,

Rg(x) = N\ R(fula

el

3.3.3 Abstraction

Let

v be a C-class

v o= (uw. ¢’—y. ey T-y, A’n ]?,Y)

and let ¥ be a subset of ®.,:

The

The

‘Ij = {gl,. N _(jyu} - ¢~1.
abstraction T(ny,~, ¥) of v with respect to ¥ is defined as:

T(ny,7.¥) = (ny. VY.ooy, Ty, Ay. Ry).
definition of ny, Ty, and Ay are similar to those of aggregation.

ny is a symbol, which designates the name of T(ny.y,¥).
¥ is the set of symbol that designates the attributes of the new C-class.

The attribute values are the same as those of v,
Vg e ¥ vy(g) = v,\(g).

Ty is the structural sentence defined as follows.
It = {(MaeVygimodifylr.g.yN=yli=1...m} U
{Ve T(g(z),v(q)) | e =1...m}.

The restriction relation Ry is defined as:

Ry(x)y=(3y T(y.n A R /\ (gly) = glr)) ).

e

21
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3.3.4 Restriction

The restriction operator replaces the restriction formula of a C-class by *he conjunction of the
original restriction formula*and an unarv predicate Y. For a C-class v,

v o= (g oo T AL R,
the restriction of =~ by an unary relation § is

O(ne.v,S) = (ne. ®,. vy, Ty, A,, R, AS).

3.3.5 Set Construction

For a C-class

v o= (n,. G, T AL RS,

the set of 7 is defined as follows. This definition is an generalization of the example discussed
for Set_of Inuteger before. The relation sviubols T and In have th. same weaning as in the
example of Set Of Integer.

Sctingersy) = (nsee. 00 L0 Terr Aserinys Bser(vy)-

where
R e~ (2) = (Y In(y. o RN

The structural sentences of Set(ne... | are just the theory T of set for any C-class 7.
The auxiliary sentcnces Ase, mav bLe defined arbitrarily to meet the appropriate description
of C-classes. Although R, say: nothing about the cardinality of the set, we assume that the
cardinality is finite. More precisely. we only cuircice ..:te sets as the model of the set ("-class
Set(nser. 7). Combining Set operation with restriction operation. we get a more general set of
(-classes. More specifically, subsets of the set Set(nse,v) of a C-class v will be expressed by
applving a restriction operator to Set(nger. 7).

3.3.6 Categorization

Once we get the notion of the set construction of a C-class. we can categorize the elemcuts of
the set by concerning some attributes. in the categorization, we ignore the other attributes
that are not interested. We obtain a set of set of a concept by taking a categorization. We
define the categorization operator as follows. Let 7 be « C-class. and let the miterested attributes
¥ be a subset of the attributes ¢,

v o= (ny, &4, vy Ty, AL Ry), W C by,
The categorization Q(nq,v.¥) of the ('-class y with respect ¥ is:

Qna.v. V) = (ng. 0. L. Tsee. A, Rg).
where
Rote)= (Vy¥VaYrInly,x) AN Inlwcy) AN Inley)
= Tluon ) AT(eony) A Agew (J() = flei).

0We assumme that the free vartable of these formlas are the <ame
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3.3.7 Generated C-Classes

\We can consider the closure by the fundamental operators on C-classes in the saine manner
as data algebras. The universal family of C-classes is the set of C-classes that is closed under
fundamental operators. And the universal closure of C-classes is the minimum universal family
that contains the C-classes.

3.4 Hierarchy of C-Classes

To formalize the hierarchy of concepts, we introduce a partial order among C-classes. We
assume that (-rlasses are described in a universal language. If concepts are precisely expressed
in the real conceptual world. we can express the hierarchy of concepts by referring to only
attributes. Namely a concept has more attributes than its superconcept. Thus we can express
the conceptual hierarchy by inclusion of attributes. Roughly speaking. we can formalize it as
follows. Let c.¢’ be concepts, and let the attributes ®., ®. be the attributes of e, ¢/ 1espectively.
Then ¢ is the subconcept of ¢’ if and only if

(bc D QC"

However as we discuss in Chapter 4, our conceptualization is incomplete. Hence we cannot
specifv the hierarchy ouly by its attributes. We need to specify the hierarchy explicitly by
introducing an order in the concepts. So we iutroduce an artificial partial order <, on the
names of C-classes. Let ny.n, be the name of C-classes v,,v2 respectively. We say ny is a
subname of nq if

n1 Xa n2.

We assume that the tvpe watching predicate T that is introduced in Section 3.3.5 satisfies the
following condition
YniVn, ny X np = (Vz T(z,ny) = T(r.ng))

We include above sentence as a part of our theory. With this name hierarchyv. we introduce a
hierarchy among C-classes.
Let 5.0 v, be C-classes,

T = (nn (D” Uy, Tn Ay, R:) (1 = 1,2).
Then v, is a subclass of v,
Y1 f. T2

if the following holds.
ny Xn N7, Tl [: T2»

b, C ). Ve Dy clo(f)) = elra( ).
= V2 Ry(y, .9,)(7) = Ra(z),

where (v, f)) designates the C-class with name v,(f)(: = 1.2). and

Ry, (@) = 39Ty A Ryy) A N (aly) = glo)).
q€D,

Sinee each C-class has a unique name. we could have defined the hierarchy onlv by the
name hierarchy. However, as we discussed above. the name lierarchy is a compromise for our




incomplete conceptualization. Therefore it is natural to reflect the effect of attributes in the
definition of C-class hierarchy as much as possible. Thus the attributes of C-classes play the

major role in determining the hierarchy of C-classes.

We should note that we can have the most general C-class in the following way. First we
assume that there is the greatest element, sav top. in the name hierarchy. Then, the most

aeneral ("-class yr is:

We assume that the theory T- of equality is always implicitly included in the structural

y1 = (top. 0, L.0.0. TRUE).

sentences for any C-class 7.

Thus if we express T,, to be empty, it means the structure is specified only by T_. Namely. it

I. = {(Vzr=z}U{VaVyz=y=>y=r1x}
U{VzVyVz(r=yAy==z)= 2=z}

is just the structure of a set.

3.5 Conceptual Order and Fundamental Operators

The conceptual order is the realization of semantic hierarchyv of concepts. There is a close
relation between conceptual order and the fundamental operators, as shown in the following

theorem.

Theorem 2 Letv,y'. ¥ = {%}L, and v = {7/}, be C-classes. Moreover, let n and n' be

new C-class names such that n < n'.

.

Aggregation
For attribute names @,

(1<Vi<ny <) = (I(n 7. &) <I(n. v, &)).

Abstraction
For a subset ® of the attributes of 7.

n,<n=y=<T(n~v.9)

Restriction
For a unary predicate S,
n=<n,=>0ny_S5) <~

Set Construction

v <" = Set(n.~) < Set(n'.7")

(‘ategorization
If the set of attributes ¥ is common in y and ¥', then

'

v <y = Qo V)< Q' .

The proof of the theorem is easy. so it is omitted.

——“
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3.6 Generalization and Specialization

In our mental processes, we generalize several concepts by taking the common attributes of
those concepts. For example, we get concept "mammal’ by generalizing ‘dog’, ‘cat’, ‘monkey .
etc. On the other hand, we specify a concept as the semantic intersection of several concepts.
For example, the natural number is described by the semantic intersection of integer aud
positive number. We formalize these mental processes using the conceptual hierarchy provided
above.

Let us assume that a conceptual hierarchy < is given. First we introduce some notatious.
Let {7, }7., be a set of C-classes. If the least upper bound of {7; }7_, with respect < exists.
we denote it by

If n = 2, we denote it by
71V T2

Dually, the greatest lower bound of {7, }’., is denoted by

=1

or
T A 72
By definition, the operator V and A are commutative and associative. Furthermore,

n
Vor=mVmVe (mo V)
1=1
n
AN v= MAMmAC (o Ava) o).
1=1
Now we define the generalization and specialization.
The generalization of {7; }I_, is defined by the least upper bound v?_,+,. In particular
the generalization of two C-classes v and 7' is 7 v 7'. As stated above. any generalization
is described by the operator V. We call v the generalization operator. The definition of the
specialization is similar to that of the generalization. We replace vV aud “least upper bound”
in the definition of generalization by A and “greatest lower bound” respectively. We call the
operator A the specialization operator.
Similarly, we introduce operators V, A in the C-class names, according to the name hier-
archy.
Due to theorem 2, we have the following theorem.

Theorem 3 Lety.y, 7 = {v}~, 7' = {7,372, be Cclasses.

e Aggregation .
Let ¥ A 7' be the sequence (i Ayl ... Ta AY) and let 5V 3" be (43 V vy oo VL)

For a new C-class ncone n n'.n"

. a sequence of attribute names ¢,
n AR =" = M.y S)AH .~ ) = (n". 3 A~ d).

nvn = a" = H(n,3.9)v H(n . d) < I(n". Vb

Y

N

1
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o Abstraction
For a common subset @ of attributes of 4,7/,

nAn =n" = T(n,4, ®)A T, Y, &) =T(n".vyA7, &),

nvn' =a" = Y(n,y, @)V Y(n.,v,®)=T(n". 7V d)

o [Restriction
For a unary predicate 5,57,

nAn =n" = O(v,5A5)=0(+,5)A0(7.5).
nvn' =n" = Oy, 5vE)=0(7.5)V 0O(y.5.
e Set Construction

"

nAn =n" = Set(n,y)A Set(n'.v") = Set(n”, v A1),
nvna' =n" = Set(n,y)V Set(n'.7') < Set(n", vV 7).

We should note that in the previous two theorems, we always have to specifyv the name hierarchy
fo obtain a reasonable result. The name hierarchy is an artificial hierarchy and we have to
assign the order in the names of C-classes so that they are compatible to the natural semautic
hierarchy of concepts.

To summarize, we have introduce the notion of C-class and an order among them to
fornialize concepts and the semantic hierarchy of concepts. Morecver we have introduced
formal operators on C-classes that provides a formalism of mental processes that produce new
concepts out of existing concepts. Finallv, we have provided some theorems to show that the
formalism provides the natural relation between the fundamental operators and the concept
hierarchy, which is one of the verifications of the correctness of the formalism.

4 Models and Instances

So far. we have discussed the notion of C-classes, which is the formalization of database schema
objects. Now, we are going to discuss the actual data that will be in a database. We regard
a database as an expression of the real world. Each concept in the real world is expressed by
(‘-class defined in the previous chapter. Each occurrence of concept is expressed as an instance
of C-class.

In the framework of a value-oriented model, an instance of a C-class is just an element of
the data algebra that is the model of the C-class. The occurrence of a compound C-class is
determined by the set of attribute values. However, as we discussed in Section 1.1, we cannot
capture the real existence of the occurrence in this paradigm, because our conceptualization is
always incomplete, i.e., an approximation of the real concept. We need something other than
attribute values to distinguish the occurrences in the real world. It is so-called object-identity.
which will be formalized.

In this chapter, we first define the value-oriented model of C-classes. A value-oriented
model of C-classes is a collection of data algebras that are specified by the C-classes. The
data algebra provides the space where the siructure of the real world objects are expressed.
Next. we will extend the value-oriented model to object-oriented model by introducing the
object-identity space.

94
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4.1 Value-Oriented Model of C-Classes

Let ' be a set of C-classes generated by fundamental operators from a set I'y of the primitive
("-classes, and let

D = ({6, ] 6, = (n5.Asiry), v €T}, =50)

be the pair of a many-sorted data algebra with the sort § generated by ). and the name-
Lierarchy <, of data algebras. Then D is called a value-oriented model of T, if the following
conditions are satisfied. Let v be an element of I' such that:

v = (n.. &,. v,. T,. N,. R.).

e Primitive C-Classes
Each primitive C-class v satisfies:
— The universal algebra A, is the algebra corresponding to a sort in §.

— The restriction function of é, is the interpretation of 2,. We assume that each
predicate will be interpreted as a function to 2. where | is regarded to be TRUE.

¢ Compound C-Classes
For any compound C-class v, A, is a subalgebra of N jce, A, (s). Typically, when T, is
equal to T9. A is isomorphic to the product algebra Il e, Ay itself.
— Lach function symbol f in @, is interpreted as the projection from [];cq A,y to
Au(s)-
— The restriction function r. is also the interpretation of R,.
F'or a C-class v corresponding a concept, an element of the data algebra é., represents an

occurience of the concept as a value. We call the element a value instance of 4. Furthermore,
the data algebras should be compatible with the hierarchy of C-classes. Namely,

VyVy €T, v <Xy = 3pyy: 6y — 64, (py is the subtype mapping from v to v').

I'or the top C-class, we have a model é1 that is set theoretically isomorphic to the set of
object-identities. which will be formally introduced in the next section.

6T = ((Q.@), 1)

4.2 Object-Oriented Model of C-Classes

T'he value-oriented model of a C-class provides the base of the algebraic structure for expressing
occurrences of concepts. In this section, we extend the value-oriented model by the notion of
object-identity. We will introduce object-identity space to express the real existence of objects.

[.et D be a value-oriented model of " as defined in the previous section. Let € be the pair
ol a set @ with an appropriate cardinality, a collection F of partial functions from Q to itself.
We call Q@ the object-identity space. Further, let [ be a collection of partial functions from Q
to a data algebras in D for each v in . Namely,

D = {&1v el

I'= {1ty Q=46 €T}
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The partial function 1, is called the instance mapping of v. The domain d(~) of ¢, 15 called

the object instances of ~.
Then, an object-oriented model .M(I') of C-classes I' is a triplet

M) =(D.Q, 1),

which satisfies the following conditions.

o leta, vy bein I I 5 =+ then

—

A1 C ") and Y € D(7) th(w) = pyrrota(w).

where p. .. is the subtype mapping from 54 to 7’ in the value-oriented model D. Thi-
condition shows the compatibility of the hierarchies of the object-identity space and the
value-oriented model D. Note that the hierarchy of C-classes in the object-identity space
is expressed by the set inclusion of the domains of instance mappings.

o For each function symbol fthat appears in the description of C-classes, there is a corre-
sponding partial function o(f) in F.

e The mappings o(f)'s are related to the value-oriented interpretations v(f)'s via the map-
pings [ in the following wav. Let us take a function svmbol fthat appears in the descrip-
tion of C-classes. which has a signature!! nyny---n,, — n, where n and n,’s are concept
names of C-classes v, 7,’s. Then we have the commutative equation:

rooffy=v(f)oml, u,

T4
" M, 6
/
o(f) f v(f)
}
i
2 6
where
(f) 0L 00 — 80 o(f): 27 — (2,
T rcis the product mapping of ¢, (¢ = 1, n):
de
Flnlwre ) e o),

The data alechra & correspouds to the Coclass =, and ¢ 1s the instance mapping of -,

similarly dara aleebra &, and intance mapping ¢, for 4, (1 <0 < n).

The definttion of stanatiee s provided i [(GB 85]

al
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The above commutativity is the essence of our model. It clearly separates the “object-
oriented part” and “value-oriented part”™. We call it fundamental commutativity. Further, it
demonstrates the essential difference of an object-oriented data model and a value-oriented
data model. The difference between object-oriented model and value-oriented model lies in
the object identity. There are several features other than object-identity, which are generally
considered to characterize an object-oriented model. such as complex object. inheritance. etc.
However, as we will see later, the semantics of those features can be captured by the algebraic
construct. such as types, aggregation operators, when we express instances as elements(values)
of a data algebra.

The set of instance mappings {1, {7 € ['} is called an schema instance of T.

The object-identity space Q is a flat'? set with a set of partial functions. The value-oriented
model D provides a structure on 2, which is called rvalue space of I'. The instance mapping
of a C-class expresses the correspondence between object instances and value instaaces.

\We have a natural ordering for schema instances. Let the object-identity space € and
value-oriented model D be fixed, and let [/ and /' be schema instances of 1"

I = { |y e} I'={ ]|+ eI}
We call the schema instance [ the schema subinstance of I' and denote it by

I <7,

Vy € T, 2, is an extension of 1.,.

This ordering is useful when we consider the schema instances of C-classes with recursive
structure. Obviously, the order is a partial order. If [ and [’ ceincide on the intersection of
their domains,

Vy €T, Vo € d(2,) ML) () = 1 (x).

we call themn compatible. It is easy to prove that any set of compatible schema instances has
the least upper bound with respect to the above order.

4.3 Induced Mapping on Instances

In this section, we discuss how the fundamental operators on C-classes are interpreted in the
ubject-oriented model.

The induced furdamental operators are the mappiugs that transform instance mappings to
other instance mappings. For given C-classes, we can create new C-classes using fundamental
operators. Accordingly, for the created C-classes. we can create instance mappings out of
instance mapping of original C-classes. In this section, by the term “instance mapping”. we
mean « partial function from object-identity space to a data algebra, which may provide an
object-oriented model. As discussed later, the induced instance mapping will not provide an
ohject-oriented maodel for a certain kind of fundameutal operators.

Let us assume that an object-oriented model M(I') of ' is given:

MDY = (DL )T = {10 Q — &, 5 € L)

By the term flat, we mean that no element of the set has a substricture
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We assume D and  are fixed. As defined before, an instance mappiug 2, is a partial function
from the object-identity space €2 to the data algebra é,. We denote the domain of an instance
mapping t, by 9(2,). Let 1, be the instance mapping of v in I,

T = (n"n (I)'s,. Uy o Ta,, Aw- R.\,)

e Restriction
Let § be a nnary predicate that is intended to impose a restriction on ~. The indnced

restriction operator O(-.S) is defined as:

ANO(15.5)) e {w € )| (S (w)) = 1}

s

A ~ , def )
Vo € A0O(14)). Ol SHe) = 1 (w).
Intuitively. the induced restriction operator takes only instances that satisfv the predicate
S. Note that the predicate svmbol 5 is interpreted as a mapping from 4., to 2.

o Abstraction
Let ¥ be a subset of . The induced abstraction operator Y(-.¥) is defined by:

de f

()(f(lwq})) = 0(Lw)~

- - de f
Vo € A(T(15))s Y10 ) (w) 2 Py o 14w,
where Py is the projection from [MjeeAy to MgepAy.
e Aggregation

The induced operator for aggregation is different from the above operators, because it
is a constructive operator. Let y; be a C-class and let ¢, be the instance mapping for =,
(t = 1,....n). Then the induced aggregation operator II(-) is defined as follows. The
domain J(1I{(z;...1,))) of the induced mapping is a new subset of  that has one to one
correspondence to JI™., d(,) with a mapping e:

1=1
e: AM((2g. . ... )=, O(2).

Then the induced instance mapping is defined by:

ﬁ((zl,. ceitn)) de (M2, i) oc.

There is a certain technical details, about the aggregation operator. If we have alreadyv
an instance mapping : for the aggregated C-class, we impose a condition to the invention
of object identities so that the newly derived instance mapping is an extension of the
existing one.

e Recursive Aggregation
The induced operator for a recursive aggregation is obtained by inductive limit of gen-
erated instances. More precisely, we first define an inflational operator to produce new
instances. Then we take the limit of successive applications of the operator.
Let GV E U W and @ be the same as in Section 3.3.2. Let ' be the set of (-classes
corresponding V', and let D be the object-oriented model of T,

U= {rlueV}.D={& uecl)
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Further. let Z be the collection of all schema instances of I'. We define an operator (y-
from the T toZ. Let I bein 7,

I={1,:Q—6,|ueV)

Then )
(DY 1y e

wliere v designates the least upper bound with respect to the schema instance ordering
defined «t the end of section 4.2. The instance mappings (/) is defined as the minimal
schema instance that is compatible with I such that it satisfies the following conditions.

Ve e lr, Sw(l)y = 1y,
Ve eV =11 YuVg st (vou,g) € E, mg(I(&w (1)) 2 3(1)

where 30&n(1),)) and 3(1,,) are codomain of {u (1), and 3(1,) respectivelv. and =, is the
projection corresponding the cdge (v, u. g). Note that £4/(]) may not be unique '?. For a
given scliema instance /. we construct a monotone increasing schema instance sequence
{1}, by applying Cw successively.

def .
Ip =1, In+1 :f QW'(171)~

Since {1}, forms a compatible set of schema instances, we can obtain the inductive
limit [ as the least upper bound of the set. Then we define the induced schema instance

~

NG o1V yas To:

V={vi v ivm}y foo = {1aQ — 6, |1 < i < m}.
MG, e, W) =M((t1,...,1m)).
By definition, the instance mappings for the C-classes in W will not change with (- We
call 117 the set of stable C-classes. If W is equal to V. the recursive aggregation reduces
to the original aggregation defined above.

e For o set construction, we can naturally induce an instance mapping. The induced
instance mapping describes the instances with all the possible finite sets of original in-
stances. More precisely, let 1 be an instance mapping of a C-class ~.

1o 2 — 4,

Then induced mapping j by set construction is a minimal instance mapping such that its
codomain includes all finite sets generated by the codomain of .

3D {{erzoe o xadlz € 3 <i< )  n=0.1.200 )

The iduced mapping is not unique. If the C-class Set{n.4) has non-null instance map-
ping 1., lrom the beginning, we construct the instance mapping  so that jis the extension

of /...

HAvtually, Syoas a mttvalued funcnion. However, we consider it as an ordinary function by taking one of t
values. The existence of S can he easily proven using the fundamental conmmuatativity
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o Categorization
The induced mapping for the categorization is obtained by the composition of induced
mappings of set construction, aggregation, and restriction operators. according to the
definition of the categorization.
We should notice that the induced instance mapping may not be unique for (generalized)
aggregation. and set construction. This is due to the fact that these operators require object-
identity invention [AK 89].
Furthermore. we can introduce operators on instances that correspond to generalization/specialization
operators.
Let v, be a C-class,

Y= (n @ v Too A R (0= 1,2),

and let ([lfcq, A, r. ;) be the data algebra corresponding to v,. Further. let i; be an instance
mapping of v,, and let P, be the projection from ll;cp A,y to Hyea,ne,Avy (1= 1.2) If

Vfed Ndy Ay s = Azyand Moy = Prory on d(1) NI(22),

the induced generalization and specialization of 1y and 1, are defined as follows.
o Generalization
The induced general sation operator V is defined as:
— if the interss tion of &) and ®, is not empty,

I 11Ve2) dg N11) U O(12),

. ~ def .
Voo € Iy) (yVag)(w) = Ply(w)) (1 = 1.2).
~ if the intersection of ®; and ®, is empty, the domain of 1; V¢ is the same as above,
and - _
(nVig): @ — &1 =((9).1)
w +~— « (inclusion mapning ).
e Specialization

For the specialization operator on (-classes. we have the following induced specialization
operator A. The operator A is defined as:

D11 A1) J“Ef )N d(e),

[I A

fEP,Ud,

<C
&
m
S
>
>
o
€
M

H,0(yA) =4 (1 = 1,2).

Although we can derive new instances by induced operators, we should note that these
instances are just possible candidate instances in our model. However, in intuitive sense, if
a (-class is derived by the fundamental operator other than aggregation or set construction,
the instance mapping should be obtained by the induced operators. We should note that
our object-oriented model is fairly general. Hence we would get a variety of “actual models™
according to the way of providing instance mappings. To provide instance mappings by the
induced mappings of the fundamental operators is a canonical way of obtaining an ohject-

oriented morlel.
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5 Database Design

5.1 Entity C-Classes and Abstract C-Classes

In our object-oriented model of ("-classes. there can be more than one object-identity corre-
sponding to one element of data algebra. Because our conceptualization is incomplete, we
cannot characterize the real existence of objects by their attribute values. However. in order
to provide a representation. we should assume that the existence can be described by attribute
values for certain concepts at least in a closed domain of the real world. This is a matter of
knowledgebase design.

Hence it is important to analvze in which case a C-class should be characterized by its
attribute values, or more generallv, in which case the object instances are equivalent to the
value instances. Namelv. we should consider when we should require the instance mapping of
("-class to be injective. In this section, we consider two kinds of C-classes that the instance
mapping will be injective. One is the algebraic C-class, the other is the logical C-class. Further
we claim that even the instance mapping of a logical C-class has the inherent possibility of not
being injective, because our knowledge representation is always incomplete.

First, we introduce and discuss the algebraic (-classes. Let us consider the concept string
for example. What are the instances of string? It depends on the context how we consider
the concept. We can sav that every string appearing in the real world can be an instance of
("-class String. Consider the following same sentences.

e “string” is an instance of String.

e “string” is an instance of String.

<

The string “string” in the first sentence is an instance of String which is different from the
instance “string” in the second sentence. However, we often need to abstract the real occur-
rences of String and regard the many instances as a same object. This is exactly what the
value-oriented model of ("-class String is intended to be. The universal algebra A g¢ny is the
abstraction of real occurrences of strings with abstracted functions such as length. concatenate.
The algebraic model A ., is virtual and doesn’t exist in the real world. However, we waunt to
treat the virtnal model. such as the algebra A gy, as if it existed in the real world. In other
words, we want to allow the conceptual existence of the abstract objects. So we introduce a
category of (-classes whose instances are virtually the same as the domain of an algebra in
the value-oriented model. Namely, the instance mapping is injective. We call such ("-classes
algebraic C-classes. An algebraic ("-class is a kind of “literal.”

Other than algebraic (-classes. there is another kind of C-classes that instance mapping
should be injective. It is the C-class derived fromn a logical relation. We can express a n-ary
logical relation by a C-class with n attributes. Since an occurrence of logical relation is nothing
but an element of a subset of the cartesian product of domains(object-identities), it is exactly
characterized by its attribute values. We call snch (-classes logical (-classes. The notion of
logical C-classes will be discussed in detail with an example later in this section.

Note that the notion of algebraic C-classes and logical C-classes are not determined by
object-oriented models. Rather it s required in the meta level. In other words, it is a desien
issue of knowledge representation whether we require a C-class to be an algebraic or logical
C-class, We call a C-class an abstract cluss. il we impose a restriction that its instance
HEAPPINE s injective,

The abstract Coclasses strictly (it into the valuc-oriented data modell T all the C-classes
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are abstract C-classes, any object-orianted model is essentially the same as a value-oriented
model.

We call the remaining C-classes entity (“classes, whose instance mappings are not intended
to be injective. The entity C-classes are the representation of the “existing objects™ in the real
world. In a practical design of knowledgebase, the phvsical objects and events are expressed
as eitity C-classes. This design issue will be discussed in the later section. For example,
‘person Canimal’company’, ‘meeting” and “order” are entity C-classes. Note that the “existing
objects” should not necessarily be physical objects nor events. It cun be some abstract object,
which is still an expression of the existence of “something” in the real world. Basicallv. anvthing
that can be noun will be an entity C-class. Hence, even ‘friendship’. "love' can he entiry (-
classes. Actually. the author presumes that the nominalization in the mental process of human
being 1s essentially the same as creating an entity C-class. The ideutity of an entity C-class is
characterized by its object-identity.

We emphasize again that the notion of abstract C-class and entity ('-class is not determined
by its model. The instance mapping of an entity C-class may be injective with some particular
ohject-oriented model. It is a meta level requirement, i.e. design level requircment.

[t is controversial whether we should express a logical relation as a C-class. Alternatively.,
we can introduce the notion of logical relation as another construct of our theory. There are
two reasons why we express logical relations as C-classes.

¢ It mayv be the case that an occurrence of logical relation will he converted to an existing
ohject by a certain meta operation, which will be discussed in the rest of this section. So.
i is more convenient to express logical relations as C-classes. because the meta operation
can be expressed as just a mapping from a C-class to another C-class.

o It is better to have only C-classes as the basic construct of the model so that we can
freat the knowledge representation in a simple and homogenecous way.

[n the rest of this section, we will provide the intensive consideration to the meaning of
entity (-classes and logical C-classes. Especially, we will discuss the meta operation that
converts a logical ("-class to an entity C-class.

A logical C-class is a compound C-class that we make up to express a logical relation of
the real world objects.

Let ns consider a concept Person with attributes, name, loring. Furtlier, let ¢ be the
instance mapping of Person and 9(1) be the domain of :. The attribute value ioving(w)
designates the people that w loves.

Person = (person,{name.loving}, vperson. I p.oc... TRUL)
UPerson{naie) = String. vperson(loving) = Set of _Person,
['or example,
!

w.o Ed), name(w) = “John” name(w'y = “Mary” . Inl doving(w)

means that the person w named “John™ loves the person &’ named ~NMary.”
A C-class 2 will be a logical C-class with two attributes loves  and loved’ pointine persons:

D =(affection {lovesdored) vo o Be),

where

ro(lores) = person vollored) = porson.
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Ro(r) = Inlloved(x), loving(loves(x))).

and the structural sentence To is the one that is similar to TY for a C-class ~ with non-
empty attributes. It is important that the existence of the ‘affection’ is derived from the
attributes(state) of the persons. In this case. it is derived from the attributes of the loving
person. The restriction form Ro is not only restriction but also the definition of the C-class
O, Namely, the existence of instance is exactly specified by Ro. Generally, the occurrence of a
2 is specified by the the restriction predicate .. Thus the identity of a logical
('-class should be determined completely by its attribute values. The occurrences of a logical
(-class should be the same if and only if their attribute values are the same. Thus one might
sayv that a logical ("-class can be dealt with by the value-oriented paradigm. However it is not

losical ('-class =~

so simple.

We should notice that even a logical C-class is an approximation of the real world. In
the above example. we specified the C-class affection with tle predicate Ro. If the predicate
completely specifies an “affection™. the attribute values will determine the equivalence of in-
stances. However. it does not. ‘John’ loved ‘Mary’ vesterdav. i.e. the predicate K~ held for
“John™ vesterday, but it doesn’t hold todayv. Even in such case, we cau still think “vesterdav’s
love of John for Mary.” The instance of concept acquired an object identity. The reason is
that the specification by the predicate Ro had lacked temporal information. If it hiad included
the temporal attribute. we could have expressed the “vesterdayv's love” only by attribute val-
ues. Therefore, due to the incompleteness of our representation. even a logical C-class may
eud up as an entity C-class. Hence we introduce a meta operation A” that converts a logical
(-class to an entity C-class. We call .V a nominalization operator. The nominalization oper-
ator corresponds to the mental process of putting a name to a chunk of information that we
acquired.

As discussed above, every C-class may be inherently an entitv (-class. However, in order
to organize the knowledge representation. we should impose a condition that certain C-classes
are to be abstract C-classes, as discussed in the next section.

5.2 The Concent Model

In this section. we introduce concept model for database design. and discuss its semantics.

5.2.1 Design Process

First, we discuss the design of knowledge representation. s we mentioned in the previous
section, even an instance of logical relation would be an instance with object-identity. How-
ever, when we develop a knowledge representation. we have to assume some of the C-classes
should be abstract C-classes. For example, when we register a new instance of (-class in the
knowledgebase, we have to know whether the instance is already stored or not. \s we dis-
cussed. we can only belicre that we can distinguish the instances by our representation. This
is a matter of correctuess of knowledge representation. Hence. when we design a knowledge
representation nsing -classes, it is the main issne what ' classes we should resard as the
basic abstract C-classes.
The design process will consists of the following steps.
L. Provide algebraic Ceclasses.such as Integer, String, Scl. Sequence. Further we provide
primitive functions and predicates. For example. {+. 0 >0 ) for Tuteqger. Vunron,
mtersection, In} for Set.
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(hoose real world concepts that provide the basis of our knowledge representation and
express them by C-classes. We introduce as many attributes as possible to those C-
classes. so that we can assume that tleir instances are fully specified by attribute values.
i.e.. the instance mapping is injective. We call such C-classes base C-classes. For exaiple.
a ~oncept person would be expressed by a base ("-class Real_Person. We assign as many
attributes as possible so that we can distinguish individual persons. (The concepts,
such as employee, ~student can he expressed by C-classes derived from Keal_Pcrson by
abstraction operator. because we doun’t need all the attributes of Real_Person to express
an emplovee or a student.)

We should note that basic C-classes are inherently entity C-classes, althougl we recard
them as abstract C-classes. In fact. when wo view the knowledge representation thirough
a perapective different from the original design or when we add a new ("-class 1o the
schema, a base C-class may become an entity (C-class. In such a case, we have to nod-
ifv the schema by adding new attributes to the base (C-class. in order to keep up our
requirement that the C-class should be an abstract C-class.

The guidelines of selecting base (-classes are as follows.

o Physical objects should be base C-classes. For instance, person. car. Jocation. ¢1c. So-
cial organizations. such as companyv, may be considered as phyvsical objects. because
they consists of physical objects, such as employvee, office. factory. etc.

e Fuvents should be base C-classes. For instance, meeting, accident. order form of
parts, etc.

Analyze the relation of base C-classes and check that every necessarv logical relation
among base (-classes can be expressed by the attributes of base C-classes. We add
new attributes. f necessary. The point is that all information should be included in the
attributes of base C-classes. If so, we can express any information by the (-classes derived
by the fundamental operators from base (-classes. Hence, the integrity constraints of
knowledgebase will be completely described by the restriction predicates of base C'-classes.
Thus in order to maintain the consistency, we only have to maintain that of base (-classes.
For example. when we consider a C-class Person and a C-class C'ar, there may be a logical
relation QunerCar. We exnress themn with attributes vuns of Person and owner of
C'ar. The attribute owns designates the belongings of a person. and the attribute owner
designates the owner of a car. Then we wiil express the QunerCar relation by a loaical
('-class with attributes {owner.car}. and the restriction predicate Ry, rour:

OQuwnerCar = (ownerear, {owner, car}. towmercars Tas @ Rowner o)

Vownercar (OWNEr) = PETSON, UCsymercar = O[)j(f(‘f.
Rownercar () = In(car(r). owns(owner(x))),

where T is the same as in section 3.1.3. The restriction predicate means that the ca
car(r) is one of the belongings of the person owner(r).

It 1s an important requirement that we can construct every logical relition by attributes
and primitive functions and predicates of algebraic Coclasses A and base Coclasses BT
~0. we can construct any logical relation throueh fundamental operators from A and 5.
Hence it will allow us to provide the semantics of those locical C-classes using imdnced
nstance mappings. We will discuss 1t in the nest section,

’)(,
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4. We define appropriate “view™ C-classes using fundamental operators. Logical C-classes
will be defined by the {generalized) aggregation operator, while entity C-classes will be
defined by abstractions and restriction operators.

5.2.2 The Concept Model and Its Semantics

A coneept model MV of a knowledgebase is a tuple consisting of C-classes of three kinds together
with a (-class hierarchy <.

M=((A,B,D), <)

A is the set of algebraic (-classes such as Integer, String. etc. B is the set of base C-classes.
D is the set of all derivable C-classes, which can be derived by a finite application of the
fundamental operators from A U B. We should note that the union of A. B and D forms the
universal closure of the union of A and B.

The semantics of the model is as follows. Let T be a finite subset of the union of A. 5. D.
such that for each C class in I', the C-classes that are the attribute values of = is also in I':

Y = (iins D40 0, T AL R,

Vied, v(f)el.

YWe call such a set of C-classes closed set of C-classes.

The semantics of the concept model is provided by an object-oriented model (D.Q. 1) of
the C-classes I with the following conditions for [. Let &, be a data algebra in D that is the
model of v in I.

¢ The instance mapping of a C-class v in A is injective and surjective partial function from
Qto d,.

¢ The instance mapping of a C-class vy in D is obtained by induced instance mapping of the
fundamental operators that define the C-class. For a recursive aggregation, we require
that the base (-classes are always treated as stable C-classes. We will consider this

induced mapping in detail in the next section.

¢ The instance mappings of base C-classes express the instances that are existing in the real
world. Th« instance mapping of a C-class v in B would be intended to be injective by the
knowledgebase designer. However, we don’t impose the restriction as part of the formal
semantics. If the instance mapping happens to become not being injective, the schema of
the knowledgebase should be altered. It is a matter of maintenance of schema. Note that
a base C-class may be defined with fundamental operator from other base C-classes and
algebraic C-classes. However, the instance mapping is not derived by induced instance
mapping. The instances will be created by update operations of the user.

As we discuss in Appendix A, one of the characteristics of this model is homogeneous
representation of query. There is no distinction between those three kinds of C-classes for
users. so long as query is concerned. A user doesn’t have to consider which C-class corresponds
to the data stored in the knowledgebase. Each C-class would be automatically bound to a set
ol instances by the svstem. The homogeneity of C-classes will bring a clear semantics of view
npdate, which will be discussed in Section A.2.1.

i)
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5.2.3 Two Kinds of Predicates

If the derived C-classes are recursively defined. their instance mappings will not be alwavs
determined nor exist. In this section, we consider this matter further.

First we extend the graph we discussed in the definition of generalized aggregation. We al-
low the labels of edges to be operator expressions that express the other fundamental operators.
For example,

Person = (person, {name, height. father}. vpersons TPerson . TRUE),

UPerson (NAME) = SIrIng, Upersonihicight) = Integer,

UPerson{ father) = person.
TallPerson = O(tallperson, Person, Ryquperson)-
RyaiiPerson(2) = (height(x) > 6(ft.)).
The graph will be:
Vo= { person.tallperson string. integer},
E = { (person.string, name).(person.integer,height).

{person. person, father),
(tallperson. person.O(tallperson, o Rrauperson )}

We can define a function ¢ from schema instances to themselves in a similar way as in section
1.3. The difference lies in deriving the new instance mapping of the C-classes 1y that are
derived by fundamental operators other than aggregation.

Ve W, 1), = u,

Ve e V- W = Vy, Vu.gsit(v,u.g) € E.xg(SEw (1)) 2 3(2,),

Yee by - W, (viucexpr) e E &), = (the induced instance mapping by expr).

Ve (ifre V-V,
¢y = { &1, (otherwise).

As shown later in this section, this £ will produce a non-sense instance mappings for a
certain class of restriction operators.

Next. we introduce a meta function symbol getinstances in the language that designates
all the instances of a C-class. For a C-class 4 and its name n,, getinstances(n. ) designates the
set of object-identities in d(zy). The set getinstances(n.) can be regarded as an instance of
Set{nget.v). Forexample, we consider a base C-class Man and a derived C-class Richestman.

Man = (man, {naome wealth.. . }. vrrans Taren. 8. TRUE),

Riclhestman = (riche stinan. {name, wealth}. vpichestmans TRichestmans O RRychestman ).
PAfan(NUME) = Upichestman(Mame) = string.,
Cafanlecalth) = vRichestman (wealth) = integer,

Bnnestman(ZY = (Yy In(y.getinstancestmaniy)y = wealth(r) > wealth(y) ).
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The getinstances cause the interpretation of predicates to be dependent on the instance
mappings. Hence, it may not be a consistent instance mapping to some C-class definition. For
example, we can express an inconsistently defined C-class:

Wrong N umber = O(wrongnumber, 11(n001, (Integer).(value)). Ry ron, N umber ).

UWrongNumber ( calue) = integer,
Ry rongNumser (0) = (VY In(y, getinstances(wrongnumber)) = x # y).
We should note that this kind of inconsistency comes from semantics of instances. It is different
from a relevant incounsistent restriction predicate, such as:

R(z) = (P(z) A ~P(z)).

The operator ¢ defined above gives us the wrong answer in this case. Let us assume /[ i~
the itial schema instance.

Linteger 1 8 — Z(onto, one to one),

(r)( [lTltf‘geT) = {Wl.w'z,...,},
[lurongnumber = 1.
where L is the null mapping:
L:Q—7Z (0(1)=0).

Tlhen, by definition, we have:

f([)muger = linteger E(I)wrongnumber = ZLinteger

Q-([)mteger = linteger, Q(l)wrongnurnbr = Iinteger,
E(C(l))mteger = Imtegers E(C(I))wrongnumber =1,
Q.(~:([))xvzteger = Imteger- C(C(I))wrongnumber = 1.

In general.

¢ Linteger (if n is even)
S( 171 )u'rmlgnumber = L (lf nis Odd)

where [, designates ¢"(/). Thus, we cannot have the inductive limit of {/,,}72,. The prohlem
comes from the fact that I2,,,ongnumser depends on its own instance mapping. More specifically.
the variable y is universally quantified on the domain of the instance mapping. So. £(/,)
“oscillates”™ between lingege, and L. The induced mapping of Wrong N umber doesn’t provide
an object-oriented model.

According to this observation, we introduce a class of predicates.

First, we introduce the following syntax sugar to simplify the notation.

: ., def :
(Yrin, ©) = Vr(In(z.getinstances(n,)) = o).

(3r:on. o) stackrelde f=3x(In(z.getinstances(ny)) A o).

Then the above example is denoted by:

Iy N wmber () = (Vyiwrongnumber o # y).
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We call the expressions = : n, a explicitly typed variables. and Y(3) z : n, a erplicitly tuped
quantifier. For any first order formula, we can move each explicitly typed quantifier to left
side of the expression. in the same manner as ordinary quantifiers. For example.

Vz:n(T(z)= Jy:m P(z,y))

becomes

Yz:n3y:m =T(z)V Plz.y).

We call the first order form a normally quantified form, if each explicitly tvped quantifier is
placed at the left side of the expression.

If a first order form has a normallv quantified form with only existential explicitly tvped
quantifiers, we say that it is of type 2. A general first order form is called type /1.

Theorem 4 If crery restriction predicate is of type 2, then for cach schema instance [. the
opcrator ¢ defined in this section has a fir point I such that I is a subinstance of I

\We can prove that the restriction operator is monotone increasing with respect to the order
among instances. So. we can prove ( is monotone increasing. Hence. there exists an inductive
limit by the fact mentioned at the end of Section 4.2.

In this section. we have introduce a formal semantics for the concept model. The semantics
is expressed by a fixed point of (-operator. The fixed point of ¢-operator doesn’t exist in some
case. We can consider such a concept model as inconsistent. Theorem 4 shows that some class
of concept model is consistent in the sense that there exists a fixed point of ¢!,

6 Expressibility of Concept Model

In this chapter, we consider the expressibility of our model by simulating other models.

6.1 Relational Model Semantics

The relational model can be simulated by a concept model. Since we will show that datalog
semantics can be simulated by a concept model in the next section. we can derive this result
as an easyv corollarv. However, we can prove it directly. In this section we provide only the
sketch of the proof.

We express relations as compound C-classes. Forexample. a relation Person(name.address)
will be expressed by a C-class:

Person = (person. {name, address}. Upersons Tpepson- 8. TRUE).

Vperson(NAME) = Vyersonladdress) = String.

['lie relational operators are simulated by induced operators of the fundamental operators.

selection  ——  restriction
projection —— composition of categorization and abstraction
product — agqreqalion

Hihere is a trivial case that the fixed point always exists. Il thete are na recursive aggregation involved i the
defimition of the derived C-clusses, then the concept model is conmistent. e the (-operator has a tixed pomnt In
fact. for an inthial schema istance I, ((1) is the fixed point.
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Furthermore we have a natural interpretation for the natural join operator. It is expressed by
the specialization operator. Let R and S be relatious and vg and ~s be the corresponding
(-classes. Then

RXS — vpA7s.

6.2 Datalog Semantics

In this section, we show that the semuntics of datalog can be simulated by the concept model.
First we discuss how to convert datalog rules to C-class definitions. We assume that algebraic
C-classes such as Integer. String are provided from beginuing. We introduce some terminol-
ogy. A simple rule is a rule with the body consisting of one literal. If a rule is not simple, we
call it a complex rule. We call predicates such as =, <. restrictive predicates and literals such
as X < 1 restrictive literals. We also assume that all rules are rectified'>. Moreover. we assume:

e There is no predicate syinbol that is used with different arity. For example., we don't
have the rnles such as:

pX, ¥Y) = X =Y.
p(X) X > 0.

We couvert rules into the forms that will be easily transformed to C-class definitions in the
following way.

1. If the predicate symbols of facts appear as the heads of rules, we add new rules so that
they never appear in rules. For example, the rules:

p(a).

p(X) - q(X).
will becore
pi(a).

p(X) - p1(X).
p(X) :- q(X).

2. If there is a variable that is shared by more than one negated literal. and doesn’t appear
in positive literals. we rename the variable so that it is not shared by negated literals.
For example,

p(X) : - ﬂq(X.Y) & o-s(X.Y) & ot{X).
will become
p(X) : — —q(X.Y) & -s(X.Z) & t(X).

3. We convert the rules by adding equality literals so that the non-restrictive literals do not
share anv variable.

p(X) - q(X,Y) &Y =1.
will become

BIUL s8] Chapter 3
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p(X) = q(Z,Y) &Z =X &Y =1.

4. If a negated non-restrictive literal shiares variables with restrictive literals. we seperate
them by introducing “intermediate” cqualities. 'or example.

p(X) e —q{Y.Z) 1(' Y=X \\' Z=1.
will become
piX) 1= qY.Z) L Y=Y\ Z=2Z2&8&Y=X& Z=1.

We call the expressions like Y = Y. 2’ = Z in the above example the it rmiediate lite rals
and distinguish them from restrictive literals by using the equality svmbol = instead of
=. 50 the second rule in the above example is expressed by:

pX) i = ~qY.Z) L Y=Y L Z2Z&Y=X&2Z=1

For the rules after the above conversion. we assign ("-classes as follows.

1. For each non-restrictive literal sviubol. we assign a C-class (taking the predicate svmbol
as Its name).

2. For each argument of a non-restrictive literal. we assign numbered literal names as the
attribute names. rorvexawmple, a literal p(X. Y. Z) has attributes, pl 22 p3. pl corresponds
to X, p2 to Y and p3 to Z. Let us denote the correspondence by a. In the above example,

a(X) = pl. a(Y) = p2. a(Z) = p3.

3. For each variable. we assign a (-class name as follows. We express the assignment by a
mapping 7.
e [fa variable appears in a restrictive literal, we assign the name of an algebraic ('-class
according to the literal. For example, if we have .Y = 1. we get
(X)) = integer's.
e Otherwise. we assign the most generic C-class name top:
(X)) = toup.
\We should remember that we assuined the existence of the most generic C-class top
v in the C-class hierarchy.
1. For each attribute, we assign a C-class name in the the following way. \We determine the
valies of attribute value function v, for each literal symbol p. In the above example,

ra(pl) = 7(X). rp(p2) = 7(Y), rp(p3) = 7(2),

5. We convert bodies of rules to first arder forms with explicitly tvped gqunantifiers. We
describe the wav of conversion with examples. We express the conversion with a mapping

.

YK s panred waith different tapestCoelinses) by equalities. we assian the deast upper hound of those Caelissos 10
the variable X For example ff X = 17 and X = “ab” " we assign top 1o X
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e restrictive literal
\We convert the variables as shown in the following example.

a{X)(self) =1 (if X is in the head of the rule)
HX=1)= alX)(r,) =1 (if X is tn a non-restrictive literal p(...))
r=1 (otherwise)

where sel f will be the free variable in the restriction predicate of the restriction
operator. The variable r, designates the instance of C-class p.

e intermediate literal
Let X' 2 X be an intermediate literal, where X is in a negated non-restrictive!” literal
and X is in a restrictive literal. The variable X will be converted in the ~ame wayv
as in the restrictive literal. We denote it by o(X). The variable X' is converted to
a(X')(z,) where p is the literal symbol that contains X. So X’ = X will be converted
to n(X')(.l‘p) = ol X).

o nou-negated non-restrictive literal
We assume that non-restrictive literals are placed on the left side of restrictive literals
i the bodies of rules.

o(p(X)) = Fryip.

e negated non-restrictive literal

O(-p(X,Y)) =V, p.

After the above conversion, we add explicitly tvped quantifiers for the variables that
appear only in the restrictive literals.

o [f the variable X appears only in a negated literal. we add Va:7(X).
o Otherwise, we add Jz:7(X).

We arrange the existential quantifiers left side of the universal quantifiers. Next we collect
the intermediate literals for each negated non-restrictive literal and take the disjunction
of negation of the literals. For example,

PXY): = gW.V) & s(AB)& X=W&V=BL A=Y\ B=C
will become
PIXY):= =qW V)& s(AB) &L W =Wl V=V X=WLV=BLAaA=Y{B=C.
Then its body will be transformed to:

Jectop Juttop Jvitop 3rg:sVryiq  ((H(qllag) = ul v =(q2(r,) = ¢)) A

(pU(self)y = un 20r5) = e Asl(zy) = p2Asel fYNS2(0 )=

Finallv., we convert rules to C-class definitions.

“Nove precasely, we should say non-restrictive and non-utermediate Wteral owever we use the term “non-
restrictive literal™ i this sense
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o For rules with head literal pi Xy, Xo. ..., \,.) with bodies B, (1 </ < m).
WXL X Xn) = By

X Xy XG) = By

PN LX) - B

the C-class v, is defined as:
v = O(p CCO0L. (pl... .. p) (X1 (N2 e(B)).

o For facts, we assign each predicate svmbol of facts a ("-class. For example. for the
following facts.
f(1.mabc™).
f(~a”."bc™).

we have
vr = HCf (f1f2).(top, string)).

We recard that all the C-classes are abstract C-classes. We construct a concept model
with:

o Algebraic C-classes. such as Integer. String, are given.
e Base (-classes are those obtained from facts.
e The rest of the C-classes are regarded as derived C-classes.

If we provide the instance mappings for all the base (-classes according to ground facts. we
can get the datalog semantics as the least fixed point of (-operator. If there is no nevuted
subgoal, { is monotone increasing. because the restriction predicates are type 2. Thus ¢ has
the inductive limit as its fixed point. If we have stratification, we can get the least fixed pomnt
of ¢ by the algorithm described in Chapter 3 of [UL 38].

6.3 IQL Semantics

We show that our model can express the semantics of Abiteboul and Kanellakis™ IQL-mode].

In the following discussion, the meaning of notations is the same as theirs, unless v is
explicitly mentioned. We have the sets of relation names R, class names P. attributes A aud
constants D, and object identities (). A given schema (R. P, T) is converted by introducing
new class names P’ so that each tvpe expressions appearing concerning T is depth 1. For each
class name p in P U P/,

T(p) = DIp | [Avpr o Aapa] P o v ) [ A pa)

where p/opyopy.. . pp arein PU P’
For example, if we have tyvpe assignment,

T(person) = (name| frrsttring laststringl agemteger].
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we convert it as:
T(person) = [name:person_name, ageinteger),

T(person_name) = {first:string,last:string).

Another example is that:
T{setof rational) = {{deninteger, num:integer!}
will be converted to:
T(set_of rational) = {rational}.
T(rational) = [denzinteger. num:nteger).

Next we change the svintax of literals in Abiteboul-Kanerakis™ paper.  We convert cacli
literal expression t;(12) to In(ts.t;). where t; is of tvpe {t;}. Furthermore, for a type assien-
ment 7 for variables in rules, we introduce new (-class names so that the value of = i~ always
a class name. For example. if we have a rule:

p([Ar:X. AxY]) — q(X). z(Y).
and type assignment for variables:
7(X) = [den:intcger. num:integer], 7(Y) = integer.

we convert the type assignment by introducing a class name rationall and a new tvpe assign-
ment:
7(X) = rational. T(Y) = integer,

T{rational) = [den:integer. num:integer).
Furthermore, for each tyvpe expression that appears in a rule. we assign a new class name.
which will be also included in P’. We introduce a new class pl

T(pl) = [Ap:7(X). AzT(Y)].

Finally, we convert the rule using new tvpe assignment and class names. together with newly
introduced variables. For example, the above rule will be:

P(Z) — q(X), (Y), A1(Z) = X. A2(Z) = Y.

7(Z) = p1. T(p1) = [Ay:7(X). AxT(Y)].
We extended the syntax by interpreting A; and A, as a function symbol.
After this conversion, we have:

o class names PuU P’,

e the extended type assignment T' for classes and ' for variables. (Note that we can assume
that each rule has the disjoint set of variables).

¢ new rules with only variables as the argument of relation sy mbols R U {In}.

Now. we create the (C-classes according to an extended schema and odified vnles o the
following way. First. we convert the schema into (-classes.

I
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. T(p)=p
We replace each class name p by p/ in the schema expression and rules

2. T(p) = {¥'}

\We use set construction.
Tp = Selp,ypr).

3. Tip)=py v
p = T V Ype-

1. T(p)=piL A p2

'p = Toe N e

e A
\We use recursive aggregation to define ~,'s.

-
=
=

Ydummy = ﬁ((lunzmy.(}',@). G=(V. ).

V"= {pe PUP’'|pappears in the aggregation expressiot.}.
E={{p,p. 8| T(p) = Arpr..... Aep's L)}
¢ is any set of svmbols that has one to one correspondence with 17,

Next we convert the rules into C-class by the same way as we convert datalog rules. The
only difference is that we may have a functional expression, such as A{(.X'). as argument of
equality. We can convert such an expression naturally to a first order formula. [n the above
example, the rule:

P(Z) — q(X),x(¥). Ai(Z) = X.Ao(Z) = Y.

wonld be converted into

vp = O(p,pl, (¢ Fyr: Ag(sel f) = qi(x,) A Ao(sel f) = »1{y.)) ).
Vor given [QL program I'(S, Sin, Sout). we convert the schema S and the rules in the above
wav and get (-classes. Then we define a concept model with
e The C-class yp for the constants D is the only algebraic (-class.

e ‘The C-classes that correspond to the initial ground fact are base (-classes. as in the case
of datalog program.

e The remaining C-classes are derived C-classes.

Then the programs inflational fixed point will be provided by a fixed point of the (-operator.
Note that providing the instance of a schema in the IQL model is the same as providing a set
of vround facts.
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6.4 IRIS Semantics

[u this section. we briefly show that most of the semantics of IRIS svstem {I'S 89] can be
expressed by a concept model. We provide only a sketch of simulating the IRIS semantics by
the concept model.

Up to now, we assumed that the algebras that appear in the value-oriented model C-classes
are partial-valued algebras. In ordered to capture the semantics of [RIS svstem. we assume
that they are mnlti-valued algebras. Ve need no change in our theory. because we can replace
the partial functions in our discussion by multi-valued functions. because the multi-valued
functions and sets form a category as we suggested in Section 2.1.

We formalize the semantics of IRIS systemn without foreien functions. First we assian
algebraic C-classes to its literals, such as integers. strings. Second we assign base C-classes to
its objects. Finally, we describe the functious by first order sentences and add them to the
auxiliary sentences of C-classes. Then the object-oriented model of these C-classes provides the
semantics of IRIS svstem. Actuallyv. the semantics is expressed exactly by the object-identity
space of the object-oriented model.

7 Future Work

There are several issues for future work.

¢ Schema Evolution
As suggested in Chapter 5, object-identity playvs an essential role of schema maintenauce.
It mayv provide the formal guideline for schema evolution. For example, when a new
concept {schema object) is added to scliema. the existing concepts should be altered so
that base concepts will stay being «i stract concepts.

o Complex Values

We demonstrated that complex value has an inherent disadvantage concerning main-
tenance of consistency of a knowledgebase. because it cannot incorporate with object-
sharing. However, it has a strong advantage in providing structured data that a pro-
grammer can easily handle, as discussed in [LR 89]. Hence we should introduce the
formalism that can provide the structured data without sacrificing object-sharing. The
author presumes that it would be attained by introducing “local concept.” Nanielv. the
language provides the construct for defining concepts that are local to a concept. A
programmer can provide the access method to the local concepts so that the instance of
local concept and its attributes can be shared from outside. We should note that this
will bring no change in the semantics of object-identity. Any object-identity is inherentiy
global, because knowledge is global. The object-identity of a local concept is realized in
the “global” object-identity space. as well as that of global concept. The construct of the
local concepts will be introduced for programming convenience.

o [mplementation of Concept Model
Recently. a prototype svstem of Concept Model has implemented the model as a language.
The prototype svstem is written tn 12,000 lines of Common Lisp code. The system checks
the integrity constraints antomaticallv. The actual session performed on the prototvpe
system is shown in Appendix (.
There are several technical issues, such as 1vpe checking consistency maintenance and
object-hinding, which will be discussed in the next report.

e
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8 Conclusion

We have presented a formalism that expresses the clear semantics of ubject-identity and the
essential distinction of the value-oriented model and the object-oriented model. In order to
express the value-oriented semantics. we have introduced the notion of data aigebras. The
semantics of object-oriented model is expressed by the combination of the object-identity
representation and the value-oriented representation.

Moreover, the formalism has incorporated the logical database model into the object-
oriented model by expressing logical relations as classes.

We should emphasize that our model provides the full-advantage of object-shariug using
object-identities. wheu it is applied to a practical svstem. Yet, it also provides the siructured
algebraic ~emantics.

The concept model based on the formalism has been proposed, which provides the formal
guidelines on knowledgebase design. The concept model is an attempt to represent the existing
objects in tne real world as faithfully as possible. Naniely, the instances of base C-classes
are strictlyv corresponding to the existing objects. Then the abstraction of those objects is
expressed by derived C-classes. The model provides a way of expressing and maintaining the
integrity constraints casily.
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A Database Operation

So far. we have discussed the schema representation of database. [n th: (v we will
describe the database operations, query and update.

A1 Query

The semantics of query is simple for the concept model .M,
M= ((A.B. D). =)

A query is basically to get instance mapping of a concept v in AULUD. We take the minimal
closed set I of concepts that contains ~ in the union of 4. B and D. Then we obtain a fixed
point of ¢ operator for I'. As discussed in the previous chapter. for a certain concept, there
mav not exizt the fixed point.

A.2 Update

The update is to modify the object-model of concepts. i.e.. to modifyv the instance mappings.
We assume that the value-oriented model and object-identity space are fixed. Further, we
assume that anyv update is obtained by composing the following three operations.

A.2.1 Insertion

Basically. the insertion can be done to base concepts. Or when we insert an instance to a
derived concept. it should be transformed to the insertion of a base concept. Thus we cannot
insert to a derived concept obtained by the constructive aggregation. On the other hand. we
cal insert an instance to a concept derived by the restriction operator. If we allow “null-valued”
attributes. we can insert an instance to a concept derived by the abstraction operator.

The procedure for insertion is as follows.

I. C'reate a new object-identity, say w.

2. Register the values of attributes, say ®. of w. More specifically. modify the interpretation
o fy's of fin & If the value(object-identity) doesn’t exist. we rreate and insert it
recursively.

3. Check the integrity coustraints. If the constraints are not satisfied. then undo the oper-
ation. (Signal error.)

A.2.2 Deletion

Theoreticallv, we don't allow the deletion of ohject-identity. because object-identity is some-
thing that expresses the real existing object. For example. even if a person dies. the fact of
the existence of the person cannot be eliminated from our knowledge. However.in a practical
svatem. we may eliminate the object-identity if the object-identity is no longer referred to by
the objects of our interest. This operation is performed by a kind of garbage collection.

=
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A.2.3 Modification

When we modify an attribute value of an instance w, we change the interpretation of the
function symbol, say f, that corresponds to the attribute. Nore specifically, we change the
value of o f)(w). The modification should be compatible with the value-oriented model. If
the object-identity for the new value of of [}« } 15 not in the knowledee base. we create a new
object-identity with the same procedure {or insertion.

A.2.4 View Update

Since we have a homogeneous representation of concepts., we can update the knowledgebase
through derived concepts. whetever it is possible. More preciselv. if we can specify a unique
object-identity(instance) to he deleted or modified, then we can delete the instance or modify
the attribute value of the instance. When we jnsert an object through view concept. if we can
verify the object doesn’t exist as an instance of base concept. we can convert the iusertion
operation to the insertion of the object-identitv to a base concept,

To summarize, if the update can be mapped to a unique update at base concept level.
then it can be performed. There is a tvpical case when update through derived coucept can
be done safelv. If a derived concept is dericed from A and B only through abstractivns and
restrictions, then the deletion and modification can be mapped to a unique update of the base
concept, because the induced instance mapping of the concept derived by abstraction and
restriction has a smaller domain than that of instance mapping of the base concept.

B Methods, Overloading, Encapsulation

The methods and encapsulation can be formalized simply by using functions with subtvpe
matching. We should note that we don't distinguish the tvpe and class in our model. A (-
cluss plays the role of tvpe. In other words, each type will be assigned to only one class. Siuce
we have C-class hierarchy, there is no semantic reduction even without the distinction of class
and type. In this chapter, we use the term fype iustead of C-class. when we use a C-class as
tvpe.

B.1 Method by Function

All methods are defined as a function with strong tvpe checking. A method of a (-class + is
defined by a binary function. One argument tyvpe for the function is . the other is the type for
the message. Note that we allow a multiple function definition in the following sense. Lor eacl
function name, we can have the multiple definition. so long as the tuple of the argument tyvpes
of the function is different. The tuples of the argument tvpes are ordered by the product order
derived from the C-class hierarchy. Hence, the compiler will try to pick up the most specific
function definition according to the argument tyvpes. For example, if we have the expression

(fry i)
¥ we pick up the function definition of f with the minimal type tuple that matches the types

of (¢1...ryn). We require the minimal tvpe tuple to be nuique. Tn a practical system. if there
exists more than one minimal tvpe taple. then the compiter will signal an error.

e use a lisp-like notation of function

).

)
|
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B.2 Overloading

The overloading of methods is naturallv attained. because the most specific function definition
Is taken for a particular pair of type and message.

B.3 Encapsulation by Subtype Matching

The encapsulation is realized by the C-class hierarchy. Let us assume that C-class = is o super
class of +,.

=y oy = (e @y, v T AL R (= 102)

The attributes that are proper for v, cannot be accessed from 5,. In other words. the areument
to the function in ¢ - &, should be an instance of a subclass of 37, Note that we include a
(C-class itself 1o its subclass,

By tvpe casting. we can easily provide a way to define a method of 77 that can aceess the
attributes propor to 5. For example. let (x+ - -) be the type casting function. If a variable v
has a type %o, and ~; is the subtype of 72, then (» v ) has tvpe 77, Then we can define a
function like in the following example.

(defunction funt (x:<%2, m: yp)
(f (* =1 x))..),
where £ is the function with argument tvpe vy.

B.4 Application to Database Security

The encapsulation can be used for database security. In this section., we describe the rough
sketch of the idea. First a user is provided with a set of C-classes that he/she can access.
More specificallyv. the type nanies that the user can use for the tvpe declaration is restricted in
the access language. So. we could say that each user has the different access language. Let us
denote the set of accessible tyvpes for a user u by A(u). We call it aceess domain. The restriction
of accessible C-classes is used as follows, for example. When we want to restrict a user 1o access
only instances of a C-class that satisfv a certain condition, it can be easilv realized by allowing
the user to access only to the C-class derived from the C-class by a restriction operator.

A user who can access only some higher level of types is not able to access the attributes
proper to the subtypes of them without a type casting function. Hence., we can impose a
protection by restricting the use of the tvpe casting function. The protection mechanism is
quite simple. A user is provided with a set of types that can be used as the destination tyvpe of
tvpe casting function. In the above example, each user has the restriction for the first arguiment
of {(x--). Let P(u) be the set of types that a user u is allowed to use in tyvpe casting function.
The set Plu)is called the access range of a user u. Let us call u a supervising uscr of type ~ if
P(u) contains «. If a user u needs a method that should access the attributes of a tvpe rhat
are not in the access range nor in the access domain, u should ask a supervising nser of the
tvpe for defining the function. Then the defined function is shipped to u. Each user u. lvas the
set of given functions Fu) that he/she can use other than functions of his/her own definition.
The <hipped function is added to F{u). Therefore. the protection is completely cliaracterized
by the tyiplet (ACn) . Plu). Fu)) of access domain. access ranee and given functions. \We eall
it aceess privilege. Furthermore, we conld introduce a relevant order to designate the streagth

oY




ol access privilege. Let us denote the set of all access privileges by P. Let a. .3 be in P.
a = (As.Pos Fo) B = (A Py Fii).

The access privilege « is stronger than 3. if
Ao 2 A and Py 2 Py and F, D F..

Moreover, we can extend the notion of access privilege by assigniug protection with each
of database operations. such as read and write, insert and delete. Let C be the categories of
operaticus. The extended access privilege I is the collection of wapping from C 1o P.

\We can manage the access of user by I together with the access hierarchy provided by the
partial order of access privileges.

For example, it is natural to require that write protection is tighter than read protection.
Then it is expressed by:

Viell. f(rwrite') < f(‘read’).

We can also introduce the order in I1. For f, ¢ in II. ¢ has stronger access power than f if
Ye € C. f(c) < g(c).

Then users can be organized by I1 with this order. For example. a manager would have
stronger access power than his staff members with this order.

C ADL Sample Session

As we mentioned earlier, the implementation of the formalism in this report is in progress. It
is realized as a data description language called ADL(Algebraic Data Language). Currently.
the system is made of 12,000 lines of Common Lisp Code. It has the {ollowing features.

I. CLOS-like Functional Language
[t has C'LOS-like functional language with strong tvpe checking for hieravchical types.
i.e.. it allows subtvpes. We can attach a restriction predicate to cach class to express the
integrity constraints.

2. Lazy LEvaluation of Object-binding
The hinding of instances to each class will be delaved until necessary. Moreover, the
update of instances are performed according to the local logs of classes. The dependency
of classes, such as “what update of which class will affects which class™ is checked at
compile time. Since the object-binding is done according to the local npdate logs. the
update cost is smaller and we can perform a necessary optimization according to the
sequences of updates recorded in the logs.

3. Incremental Class and Function Definition
New schema objects(C-classes) and functions on C-classes can be added after instances
are bound to classes. If the new classes contradict the instances of base (-classes. all
the further transactions mav be rejected as inconsistent. The contradicting instances of
derived (-classes will be automatically fixed when the object-binding for the classes is
performed.
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The current version of the language is quite tentative and will be subjected to mauyv chauges
in the future.

There are built in classes and functions. For classes, we have “top’, ‘bool’, number".’string’,
sequence’’bag’, 'set’, etc. For functions, we have:

plis : number x number — number : (add numbers)
minus © onumber x number - number . (subtract a number from a numbher)
length : string —  number  (string length)
substring? :  string X string  — bool . (1st arg. is a substring of 2nd arg.?)
<. etc.

The following is the actual session performed on this system. The lines preceded by "::" are

the comments, which were added afterwards. The highlights are in the second half of the
session, where the automatic integrity constraints checking. incremental class definition and
object-binding are demonstrated.

ADL[0]> (1isp (reset-kb!))
;; Clear all instances and initialize transaction management
., routine.

rest-kb

ADL(0]> (defconcept person (base entity) (isa top)
((name string) (address location) {(age number) (phone string)
(occupation string) (salary number))
(res (and (gt (age self) 0) (1t (age self) 200))))

ADL[0]> (defconcept location (base entity) (isa top)
((state string) (city string) (street string) (number string)
(apartment string) (apartment-number string))
(res true))

ADL[0)> (defconcept student (derived entity) (isa person) ()
(res (equal (occupation self) "student')))

ADL[0]> (defconcept professor (derived entity) (isa person) ()
(res (equal (occupation self) "professor")))

;; We have defined four new C-classes: person, location, student,
;5 and professor.

ADL[0]> (compile)
;; recompile the classes and functions.

;1 First, we demonstrate a nested transaction and object sharing.

o

ADL(G]> (begin-transaction)[1]

;; begin the transaction.

;+ The system supports nested transactions.

;; The number in the prompt "ADL[#]>" shows the nesting depth.
ADL[1]> (insert (person (name "John")
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(address (location (state "CA")
(city "Palo Alto"™)
(street “Yale")
(number '2260")))

(age 20)

(salary 40000)))

ADL(1]> (set john (find person (equal (name self) "John")))
;; Any 1nstance can be bound to a global variable.
;; Note that we don’t have to specify the all of the attribute
;; values, because an attribute is treated as a partial function.

ADL[1]> (insert (person (name "Mary")
(address (location (state "NY'")
(city "New York")
(street "West')
(number "47")))
(age 18)
(salary 50000)))

ADL[1]> (set mary (find person (equal (age self) 18)))

ADL[1]l> (end-tiansaction)
transaction{1] successfully terminated

ADL[0]> (begin-transaction)[2]
ADL[1])> (modify mary age 25)

ADL[1]> (begin-transaction) (3]
ADL[2]> (begin-transaction)[4]

ADL[3]> (modify mary age 21)
;; We modified Mary’s age in the deepest level of the
;; transactions.

ADL[3])> (end-transaction)
transaction[4] successfully terminated

ADL[2]> (output mary)
;; We show that Mary’s age is actually modified.

[person]:

salary -> [number]:50000

age -> [number]:21

address ->

[location]:

number -> [string]:"47"
street -> [string]:"West"
city -> [stringl:"New York"
state -> [straing]:"NY"

name -> [straingl:"Mary"




ADL{2]> (modify mary address (address john))

;3 Mary’s address becomes the same as John’s address.

;; The object is shared.
ADL[2]> (output person)

;5 Now, both persons have the same address.

Instances (person]:::

[person]:

salary -> [number]:50000

age -> [number]:21

address ->

{location]:

number -> [string]:"2260"
street -> [stringl:"Yale"
city -> [stringl:"Palo Alto"
state -> [string):"CA"

name -> [string]:"Mary"

[(person]:

salary -> [number]:40000

age -> [number]:20

address ->

[location]:

number -> [string]:"2260"
street -> [stringl:"Yale"
city -> [stringl:"Palo Alto"
state -> [string]:"CA"

name -> [string]:"John"

ADL[2]> (modify (address mary) city "Stanford")

;; We change the city of Mary’s address to "Stanford“.
7 Since the location object is shared, this change is
;» automatically propagated to John’s address.

ADL[2]> (output persor)

;7 The change 1s actually propagated.
Instances{person):::

(person]:

salary -> [number]:50000

age -> [number]:21

address ->

{location]:

number -> [stringl:'2260"
street -> [stringl:"Yale"
city -> [stringl):"Stanford"
state -> [string]:"CA"

name -> [string]:"Mary"

[person):

salary -> [number]:40000
age -> [number]:20
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address ->
{location]:
number -> [string]:"2260"
street -> [stringl:"Yale"
caity -> [string]:“Stanford"
state -> [string]:"CA"
name -> [string]:“John"

ADL{2]}> (modify john age 300)
;5 This change contradicts the integrity constraints that
i, a person’s age should be greater than 0 and less than 200.
ADL[2]> (end-transaction)
transaction[3] aborted
;; The transaction in level 2 1s rejected.
;; Since the modification of the addresses of John and Mary
;; are performed in level 2, 1t is thrown away.
ADL[1]>
(mod1fy john age 30)
;. Just one more change in level 1.
ADL[1]> (end-transaction)
transaction[2] successfully terminated
;; The only changes performed in level 1 have been accepted.
ADLI0]> (cutput person)
We show what has been changed.
Instancesfperson]:::

[person]:

salary -> [number]:50000

age -> [number]:25

address ->

[location]:

number -> [string]:"47"
street -> [string]:"West"
city -> [string]:"New York"
state -> {string]:“NY"

name -> [stringl:"Mary"

(person]:

salary -> [number]:40000

age -> [number]:30

address ->

{location]:

number -> [string]:"2260"
street -> [string]:"Yale"
city -> [string]:"Palo Alto"
state -> (string]:"Ca"

name -> [string]:"“John"

;; Only Mary and John's ages have been changed.

;; Next we demonstrate the automatic object-binding.

ADL{0}> (output student)

o0




Instances{student]:::
;3 No instances are bound to ’student’.

ADL[0)> (begin-transaction)[5]

ADL(1]> (modify john occupation "student')
;; John becomes a ’student’.

ADL[1]> (end-transaction)
transaction{5] successfully terminated

ADL[0]> (output student)

;; Now, John is bound to ’'student’ as an instance.

Instances{student]:::

[student]):
salary -> [(number]:40000
occupation -> [string]l:“student"
age -> [number]:30
address ->
(location]:
number -> [string]:"2260"
street -> [string]:'Yale"
city -> [stringl:"Palo Alto"
state -> [string]:"CaA"
name -> (stringl:"John"

ADL[0]> (begin-transaction) [6]

ADL{1]> (modify john occupation "professor")

;; John becomes a ’'professor’. He 1s no longer a 'student'.

ADL[1]> (end-transaction)
transaction(6] successfully terminated

ADL[C]> (output student)

Instances(student]:::
;; He 1s no longer bound to ’student’.

ADL{0)> (output professor)

; Now he has been moved from ’'student’ to ’'professor'.

Instances[professor]:::

[professor]:
salary -> [number]:40000
occupation -> [stringl:"professor"
age -> [number]: 30
address ->
(location]:
number -> [string):'2260"

/lll!/‘r ()
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street -> [stringl:"Yale"
city -> [string]:"Palo Alto"
state -> [string]:"cCa"

name -> [string]:"John"

., Next demonstration shows the integrity constraints involving several
;; C-classes.

o

ADL[0]> (defconcept I-am-the-richest (base entity) (isa top)
((name string) (salary number))
(res (forall ((x person)) (gt (salary self) (salary x)))))

First, we define a new C-class, which claims that
it is richer than any ’person’.

ADL[0]> (compile)
;7 Incrementally compile the schema.

ADL[0]> (begin-transaction) (7]
ADL[1]> (insert (I-am-the-richest (name "tyrant"”) (salary 10000)))

ADL{1]> (end-transaction)

transaction(7] aborted
;; Since there is already a 'person’ whose ’salary’ is
;3 more than 10000, the transaction 1s rejected.

ADL[0]> (begin-transaction) (8]
ADL[1]> (insert (I-am-the-richest (name "tyrant") (salary 100000))})

ADL[1]> (end-transaction)

transaction[8] successfully terminated
;;» No 'person’ earns more than 100000. So, this transaction
;; 1s accepted.

ADL{0]> (begin-transaction)[9]
;; Now, we try to insert a ’'person’ whose salary 1is
;; More than "tyrant."

4DL{1]> (insert (person (name "richman") (age 45) (salary 110000)))

ADL[1]> (end-transaction)

transaction{9] aborted
;+ Although, "richman” satisfies the local constraint on
;» the age, this transaction is rejected, because "tyrant’’
;; doesn’t allow a richer ’'person’ than him.

We can use any first order formula to express the integrity constraints.

:» The following example demonstrates the use of quantified first order formulas.
i+ Since the schema objects can be incrementally defined, we can express

., complicated query by a schema definition.




ADL[0]> (defconcept oldest-person (derived entity) (isa person) nil
(res (forall ({x person)) (ge (age self) (age x)))))

ADL[0]> (defconcept the-oldest-person {derived entity) (isa person) nil
(res (forall ((x person))

ADL[0])> (compile)

(if (not (equal self x)) (gt (age self) (age x))))) )
;; Two classes are added. The class 'the-oldest~person’

;; should be a person who is really older ilian any one else.

ADL[0]> (output oldest-person)

;7 Both ’oldest-person’ and ’'the-oldest-person’ has an
;; 1lnstance, because there is only one person with the
;; oldest age.

Instances{oldest-person]:::

{oldest-person]:

salary -> [number]:40000
occupation -> [string]:"professor"
age -> [number]:30

address ->
[1ocation]:

number -> [string]:"2260"
street -> [string]l:"Yale"
city -> (stringl:“"Palo Alto"
state ~> {stringl:”CA”

name -> [string]):"John"

ADLT0]> (output the-oldest-person)

Instances[the-oldest-person]:::

[the-oldest-person]:
salary -> [number]:40000
occupation -> [stringl:"professor"
age -> [number]:30

address ->
{location]:

number -> [string]:"2260"
street -> [string]:“"Yale"
city -> [string]:"Palo Alto"
state -> [stringl:"CA"

name -> [string]l:"John"

ADL{0]}> (begin-transaction){10]

., Now, we add one more ’'person’ whose age 3s the oldest.

ADL[1)> (insert (person (name "Kate') (age 30) (salary 45000)))

ADL[1)> (end-transaction)
transaction[10] successfully terminated

;; Now, there are two persons with the oldest age 30.

pge 62
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pege 03

ADL[0]> (output oldest-person)
;; So, ’'oldest-person’ has two instances.

Instances(oldest-person]:::

[oldest-persor]:
salary ~-> [number]:40000
occupation -> [stringl:"professor"
age -> [number]:30
address ->
(location]:
number -> [string]:"2260"
street -> [stringl:"Yale"
city -> [string]:"Palo Alto"
state -> [string):"CA"
name -> [string]:"John"

(oldest-person]:
salary -> [number]:45000
age -> [number]:30
name -> [string]:"Kate"

ADL[0]> (output the-oldest-person)

Instances[the-oldest~person]:::
;5 But ’the-oldest-person’ has no instances, because
;3 there is no person who is strictly older than anyone else.

ADL{0]>
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